融合双重分解与深度学习的径流预报模型构建
DOI:
作者:
作者单位:

南京大学

作者简介:

通讯作者:

中图分类号:

P338

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Development and Comparative Analysis of a Runoff Prediction Model Combining Dual Decomposition and Deep Learning
Author:
Affiliation:

Nanjing University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    径流预报在防汛抗旱、水资源管理等方面具有重要意义。针对传统分解方法存在的模态混叠与残差复杂问题,本文构建了一种融合双重分解与深度学习的径流预报模型—IVCL(ICEEMDAN-VMD-CNN-LSTM)。首先,运用改进的自适应噪声完全集合经验模态分解(ICEEMDAN)方法初步分解原始径流序列以降低复杂度;其次,对最复杂子序列应用变分模态分解(VMD)方法进行二次分解,进一步提取深层特征;最后,应用卷积神经网络(CNN)-长短期记忆网络(LSTM)组合模型对各子序列建模与预测,并加和重构获得总径流预报序列。选用气候气象、下垫面条件与水文特征各异的广西河口水文站、安徽正阳关水文站与甘肃兰州水文站的汛期日径流实测序列加以验证,结果表明,IVCL模型在大多数指标上均优于其他模型,具有更小的预报误差、更准确的极值刻画能力与更高的稳定性。同时,分解顺序对模型性能有显著影响,合理设计的分解流程能够有效提升径流预报精度。

    Abstract:

    Runoff forecasting plays a vital role in flood control, drought mitigation, and water resources management. To address the issues of mode mixing and complex residuals associated with traditional decomposition methods, this study proposes a runoff forecasting model—IVCL (ICEEMDAN-VMD-CNN-LSTM)—that integrates dual decomposition and deep learning. First, the improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN) is applied to preliminarily decompose the original runoff series to reduce complexity. Then, the most complex sub-series undergoes secondary decomposition using Variational Mode Decomposition (VMD) to extract deeper features. Subsequently, a hybrid Convolutional Neural Network–Long Short-Term Memory (CNN-LSTM) model is used to model and predict each sub-series. The predicted sub-series are summed and reconstructed to obtain the final runoff forecast series. The model is validated using observed daily runoff data during the flood season from three hydrological stations with varying climatic, surface, and hydrological characteristics: Hekou Station in Guangxi, Zhengyangguan Station in Anhui, and Lanzhou Station in Gansu. The results show that the IVCL model outperforms other benchmark models across most evaluation metrics, exhibiting lower errors, more accurate extreme value predictions, and higher stability. Moreover, the order of decomposition significantly affects model performance, and a properly designed decomposition scheme can effectively enhance runoff forecasting accuracy.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-25
  • 最后修改日期:2025-07-02
  • 录用日期:2025-07-02
  • 在线发布日期:
  • 出版日期: