全球径流再分析数据系统偏差归因
DOI:
作者:
作者单位:

中山大学 土木工程学院

作者简介:

通讯作者:

中图分类号:

P339;P343.1

基金项目:

国家自然科学基金面上项目(全球逐日降水预报驱动流域径流集合预报模型方法研究,52379033)


Attribution Analysis of Systematic Bias for Global Streamflow Reanalysis
Author:
Affiliation:

School of Civil Engineering,Sun Yat-Sen University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    全球径流再分析数据的偏差评估在实际应用中起着至关重要的作用,气象偏差对径流偏差的影响规律在大样本流域中还不明确。基于CAMELS 671个流域水文观测站点数据,围绕GloFAS全球径流再分析数据偏差进行检验与归因。采用面板回归分析方法,在季节尺度上量化径流再分析偏差与气象要素偏差之间的经验关系,通过bootstrap重采样方法进行参数估计,得到气象偏差对径流再分析偏差的影响的不确定性程度。结果表明:(1)低流量偏差不如高流量偏差对气象偏差敏感,随着径流分位数变大,气象偏差对径流偏差影响非线性增长。(2)随着流域面积、土壤厚度和降水季节性等流域属性的增大,降水偏差的影响呈现增强趋势;相反,随降水雪水比和平均坡度减小,降水偏差对径流偏差的影响则表现出减弱特征。(3)PET偏差对径流偏差影响呈现季节性差异特征:在春季,该偏差影响融雪驱动的高流量过程;在夏季,其影响对融雪补给的中等流量较大,同时对薄土壤流域的基流影响敏感。(4)在森林植被覆盖度较高的流域,植被蒸散发过程对夏季中等流量偏差表现出补偿调节作用,这种水文调节效应能够在一定程度上降低径流偏差。本研究揭示了全球径流再分析数据偏差与气象要素偏差的非线性响应规律,阐明了流域属性与季节动态对偏差传播的调控机制。

    Abstract:

    The assessment of biases in global streamflow reanalysis data is critical for practical applications, yet the influence of meteorological biases on streamflow biases remains unclear across large-sample catchments. Using observed hydrological data from 671 CAMELS catchments, this study examines and attributes biases in GloFAS global streamflow reanalysis. A panel regression approach is employed to quantify the empirical relationship between streamflow reanalysis biases and meteorological biases at seasonal scales, with bootstrap resampling used to estimate parameter uncertainties. Key findings include:(1) Low-flow biases are less sensitive to meteorological biases than high-flow biases, with meteorological influences on streamflow biases increasing nonlinearly at higher streamflow quantiles. (2) The influence of precipitation biases intensifies with increasing catchment area, soil depth, and precipitation seasonality, while weakening with lower snow-to-rain ratios and gentler slopes. (3) Potential evapotranspiration (PET) biases exhibit seasonal variations: in spring, they affect snowmelt-driven high flows, while in summer, they influence intermediate flows from snowmelt and baseflow in thin-soil catchments. (4) Catchments with high forest cover, vegetation-mediated evapotranspiration partially compensates for intermediate-flow biases in summer, demonstrating a hydrological buffering effect. This study reveals the nonlinear response of streamflow reanalysis biases to meteorological biases and elucidates the regulatory roles of catchment attributes and seasonal dynamics in bias propagation.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-22
  • 最后修改日期:2025-06-12
  • 录用日期:2025-06-16
  • 在线发布日期:
  • 出版日期: