基于多源信息融合的新安江模型与深度学习集合的可解释径流预测研究
DOI:
作者:
作者单位:

1.上海海洋大学 信息学院;2.华东师范大学 河口海岸学国家重点实验室

作者简介:

通讯作者:

中图分类号:

P338;TV122

基金项目:

水能资源利用关键技术湖南省重点实验室开放研究基金面上项目(PKLHD202304);水利部泥沙科学与北方河流治理重点实验室开放基金项目(IWHR-SEDI-2023-10);国家自然科学(11701363)


Interpretable streamflow prediction study based on multi-source information fusion of Xin"an River model with deep learning ensemble
Author:
Affiliation:

1.College of Information,Shanghai Ocean University;2.State Key Laboratory of Estuarine Coastal Science,East China Normal University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对径流预测中单一模型难以兼顾物理机制解释性与复杂环境适应性的问题,本研究提出一种水文机理与深度学习相结合的混合预测模型XAJ-TCN-GRU&XGBoost(XTGX)。首先利用最大互信息系数(MIC)从水文与遥感卫星气象数据中筛选关键变量。进而,基于水文机理的新安江模型与捕捉时序特征的TCN-GRU模型分别生成径流预测,前者解析物理过程,后者挖掘数据深层规律。最终,利用XGBoost构建非线性权重分配机制,动态融合两类模型的互补优势,提升预测精度。研究表明:XTGX在洛清江和赤水河径流预测和洪水预报方面优于单一基准模型,纳什效率系数分别达到0.981和0.957。研究结果可为水资源管理和中小河流洪水灾害研究提供参考。

    Abstract:

    Aiming at the problem that it is difficult for a single model to take into account the interpretability of physical mechanisms and the adaptability to complex environments in streamflow prediction, this study proposes a hybrid prediction model XAJ-TCN-GRU&XGBoost (XTGX), which combines hydrological mechanisms and deep learning. Firstly, the maximum mutual information coefficient (MIC) is used to screen key variables from hydrological and remote sensing satellite meteorological data. Then, the Xin'anjiang model based on hydrological mechanism and the TCN-GRU model capturing temporal features were used to generate streamflow predictions, the former analysing the physical processes and the latter mining the deep laws of the data. Finally, XGBoost is used to construct a nonlinear weight allocation mechanism, which dynamically integrates the complementary advantages of the two types of models to improve the prediction accuracy. The study shows that XTGX outperforms the single benchmark model in streamflow prediction and flood forecasting of Luoqing River and Chishui River, and the Nash efficiency coefficients (NSEs) are improved to 0.981 and 0.957, respectively. The results of the study are of great significance for optimizing water resources management and mitigating flood disasters in small and medium-sized rivers.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-24
  • 最后修改日期:2025-04-23
  • 录用日期:2025-04-24
  • 在线发布日期:
  • 出版日期: