基于时序卷积特征过滤模型的地下水位预测方法
DOI:
作者:
作者单位:

1.青岛理工大学 土木工程学院;2.青岛北洋建筑设计有限公司

作者简介:

通讯作者:

中图分类号:

P333.9;TV121+.3

基金项目:

国家自然科学基金项目(42272329, 42272334, 52204140)


Prediction of Groundwater Levels Based on Dilated Filtering Attention Residual Network
Author:
Affiliation:

1.School of Civil Engineering,Qingdao University of Technology;2.Qingdao beiyang design group co.,LTD

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对神经网络模型预测长时地下水位准确度低、运算资源消耗大的问题,提出了一种基于时序卷积特征过滤网络的地下水位预测方法,该方法能保持水文时序数据信息的完整性,拥有比卷积神经网络更大的感受野,能够精准捕捉地下水位的复杂时空关系。首先对水文数据进行预处理,然后采用空洞因果卷积方法作为特征提取器,结合注意力过滤模块提取水文数据特征,最后引入残差连接缓解模型训练过程中存在的网络层数过深、梯度消失和梯度爆炸问题。分别采用本文方法(DAR)、长短期神经网络(LSTM)、门控循环单元(GRU)、卷积门控循环单元(CNN-GRU)、时序卷积网络(TCN)预测意大利Petrignano水文数据变化,本文方法训练耗时最短,预测地下水位变化最为准确,验证了本文方法的可靠性。

    Abstract:

    In response to the issues of low accuracy and high computational resource consumption in long-term groundwater level prediction by neural network models, a groundwater level forecasting method based on dilated filtering attention residual network is proposed. This method maintains the integrity of hydrological time series data, possesses a larger receptive field than convolutional neural networks, and can accurately capture the complex spatiotemporal relationships of groundwater levels. Firstly, the hydrological data is preprocessed, then the dilated causal convolution method is used as a feature extractor, combined with a filtering attention mechanism for feature extraction of hydrological data. Finally, residual connections are introduced to alleviate the problems of deep network layers, gradient vanishing, and gradient explosion during the model training process. The changes in hydrological data of Petrignano in Italy are predicted using the method of this paper, LSTM, GRU, CNN-GRU, and TCN methods respectively. The method of this paper has the shortest training time and the most accurate prediction of groundwater level changes, which verifies the reliability of the method proposed in this paper.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-23
  • 最后修改日期:2025-04-01
  • 录用日期:2025-04-07
  • 在线发布日期:
  • 出版日期: