基于主成分分析的K-Means聚类算法在实时洪水预报中的应用
DOI:
作者:
作者单位:

黄河水利委员会河南局

作者简介:

通讯作者:

中图分类号:

P33

基金项目:

国家自然科学基金黄河水科学研究联合(U2243229);国家自然科学基金面上项目(42371021)


Application of Principal Component Analysis-Based K-Means Clustering Algorithm in Real-Time Flood Forecasting
Author:
Affiliation:

Hydrology Bureau,YRCC

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为更高效利用黄河源区宝贵水资源,挖掘更多历史洪水信息提高洪水预报精度,以龙羊峡水库入库站唐乃亥站洪水为研究对象,提出一种融合主成分分析与K-Means聚类的洪水分类及参数优化方法。基于1956—2023年长系列水文资料构建多维洪水特征指标体系,通过主成分分析提取累积方差贡献率达90%以上的4个主成分,结合K-Means算法将77场历史洪水划分为短时缓涨型、均匀宽峰型和长时高峰型,并使用垂向混合产流模型和新安江模型对分类洪水进行模拟。结果表明:分类洪水模拟精度高于未分类洪水,率定期垂向混合产流模型洪峰、洪量精度分别提高1.45%、0.68%;新安江模型相应提升1.58%、0.34%。检验期分类参数使洪峰误差控制在10%以内,峰现时间合格率达100%,洪量误差最大降幅达12.78%。研究证实,融合主成分分析与K-Means聚类的洪水分类及参数优化方法可显著提升模型预报精度,为黄河流域防洪安全与水资源高效利用提供科学支撑。

    Abstract:

    To enhance the efficient utilization of precious water resources in the source region of the Yellow River and improve flood forecasting accuracy by leveraging historical flood information, this study proposes a flood classification and parameter optimization method integrating Principal Component Analysis (PCA) and K-Means clustering, focusing on floods at the Tangnaihai Station (the inflow control station of the Longyangxia Reservoir). A multi-dimensional flood characteristic index system was constructed based on long-term hydrological data from 1956 to 2023. PCA extracted four principal components with cumulative variance contributions exceeding 90%, and K-Means clustering categorized 77 historical floods into three types: short-duration gradual-rise floods, uniform wide-peak floods, and prolonged high-peak floods. These classified floods were simulated using the Vertical Mixed Runoff Generation (VMRG) model and the Xinanjiang model. Results demonstrate that classified floods achieved higher simulation accuracy than unclassified ones. During the calibration period, the VMRG model improved flood peak and volume accuracy by 1.45% and 0.68%, respectively, while the Xinanjiang model showed enhancements of 1.58% and 0.34%. In the validation period, optimized parameters constrained peak flow errors within 10%, achieved 100% accuracy in peak occurrence timing, and reduced maximum flood volume errors by up to 12.78%. This study confirms that the PCA-K-Means integrated flood classification and parameter optimization method significantly enhances model forecasting precision, providing scientific support for flood control safety and efficient water resource management in the Yellow River Basin.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-14
  • 最后修改日期:2025-04-28
  • 录用日期:2025-05-07
  • 在线发布日期:
  • 出版日期: