基于ECMWF集合预报的贝叶斯径流概率预报研究
DOI:
作者:
作者单位:

重庆交通大学

作者简介:

通讯作者:

中图分类号:

P33;TV124; TV121

基金项目:

国家重点研发计划(2023YFC3006605);广西科技计划项目资助(桂科AA23062023);三峡后续工作项目(CQS23C00399和CQS23C00400)


Research on Bayesian Runoff Probability Forecasting Based on Ensemble Precipitation Forecasts of the ECMWF
Author:
Affiliation:

Chongqing Jiaotong University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    数值气象预报信息和水文模型存在的固有误差,是流域径流预报不确定性的主要来源,开展基于贝叶斯径流概率预报是径流预报修正和不确定性分析的重要途径。以三峡上游流域为研究对象,利用ECMWF集合降雨预报驱动分布式SWAT水文模型,预报得到1~10 d的径流过程;然后在对径流序列进行Box-Cox正态变换的基础上,构建贝叶斯径流概率预报模型(Bayesian Runoff Probability Forecasting,BRPF);最后,采用间隔转移概率方法和相邻转移概率方法分别开展1~10 d的径流概率预报。结果表明,相邻转移概率在预见期1~10 d预报精度下降较为平缓,干流站点的NSE均超过0.85,支流站点NSE均超过0.45;而间隔转移概率的预报精度波动较大。两种转移概率方法均可提高径流预报精度,但相邻转移概率方法的精度优于间隔转移概率方法。

    Abstract:

    The Inherent errors in numerical weather prediction and hydrological models are major sources of uncertainty in watershed runoff forecasting. Bayesian runoff probability forecasting offers an effective approach for forecast correction and uncertainty analysis. This study focuses on the upper reaches of the Three Gorges Basin, using ensemble precipitation forecasts from ECMWF to drive the distributed SWAT hydrological model and produce 1–10 day runoff forecasts. After applying a Box-Cox transformation to normalize the runoff series, a Bayesian Runoff Probability Forecasting (BRPF) model is developed. Two transition probability methods—Interval Transition Probability and Adjacent Transition Probability—are then used to generate probabilistic runoff forecasts for lead times of 1 to 10 days. Results show that the Adjacent Transition Probability method maintains more stable forecasting performance over time, with NSE values exceeding 0.85 at mainstream stations and 0.45 at tributary stations. In contrast, the Interval Transition Probability method exhibits greater variability in forecast accuracy. Both methods enhance runoff forecasting accuracy, but the Adjacent Transition Probability method outperforms the Interval Transition Probability approach.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-18
  • 最后修改日期:2025-04-22
  • 录用日期:2025-04-24
  • 在线发布日期:
  • 出版日期: