基于二维卷积神经网络的城市暴雨内涝积水模拟预报研究
DOI:
作者:
作者单位:

1.水灾害防御全国重点实验室;2.河海大学水文水资源学院;3.福建省水利水电勘测设计研究院有限公司;4.北方工程设计研究院有限公司

作者简介:

通讯作者:

中图分类号:

P33

基金项目:

国家自然科学基金面上项目(52279009)、中央高校基本科研业务费项目(B220201010)


Simulation and Prediction of Urban Rainstorm-Waterlogging Based on Two-dimensional Convolutional Neural Network
Author:
Affiliation:

1.FuJian Provincial Investigation, Design &2.Research Institute of Water Conservancy &3.Hydropower Co., Ltd;4.Norendar International Ltd;5.The National Key Laboratory of Water Disaster Prevention;6.College of Hydrology and Water Resources, Hohai University;7.Yangtze Institute for Conservation and Development;8.College of Hydrology and Water Resources

Fund Project:

The National Natural Science Foundation of China (General Program)(52279009),Fundamental Research Funds for the Central Universities(B220201010)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    城市内涝灾害频发,开展精准高效的预报、预警和预演对于城市内涝防控和防洪排涝规划具有重要意义。基于水动力学模型的城市雨洪模拟面临计算效率低、建模资料需求大等问题,难以支撑“四预”实现。本研究以扬州新城河片区为研究区,建立时空数据(降雨和地形)驱动的基于二维卷积神经网络的城市内涝积水预测模型,实现研究区全域网格的逐时段模拟。结果表明,模型对积水时空预测性能表现优异,卡帕系数等空间性能指标高于0.80,且半数指标高于0.95,大部分积水点积水深时间序列纳什效率系数为0.80~0.99。相较物理过程模型,训练(率定)和预测效率分别提升77.7倍、285.2倍。研究成果可为城市内涝实时预报、即时预警、快速推演提供技术参考。

    Abstract:

    Urban waterlogging disasters occurred frequently. It is of paramount importance to conduct accurate and efficient forecasting, early warning systems, and rehearsals for urban waterlogging prevention and control strategies along with urban flood drainage planning. However, the hydrodynamic model-based simulation of urban stormwater faces challenges such as low computational efficiency and extensive modeling data requirements that hinder the realization of "four pre-forecasts". In this paper, Xincheng River area of Yangzhou was selected as the research area, a prediction model for urban waterlogging based on a two-dimensional convolutional neural network driven by temporal and spatial data (rainfall and terrain) was established to realize time-by-time simulation of the global grid in the study area. The results demonstrate the model's exceptional spatio-temporal prediction performance. During the simulation of multiple rainstorm-waterlogging events, all spatial performance indicators, including the Kappa coefficient, exceed 0.80, with half surpassing 0.95. Moreover, the Nash efficiency coefficient for most water accumulation points in the study area ranges from 0.80 to 0.99 in terms of time series analysis of water depth. Compared with the physical process model, the training (calibration) and prediction efficiency are improved by 77.7 times and 285.2 times, respectively. These research findings serve as valuable technical references for real-time forecasting, immediate warning systems, and rapid predictions related to urban waterlogging.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-16
  • 最后修改日期:2025-03-27
  • 录用日期:2025-04-01
  • 在线发布日期:
  • 出版日期: