基于贝叶斯非齐次隐马尔科夫模型的京津冀日降雨模拟研究
DOI:
作者:
作者单位:

1.河北工程大学;2.哥伦比亚大学

作者简介:

通讯作者:

中图分类号:

[TV11] TV125

基金项目:


Author:
Affiliation:

1.Hebei University of Engineering;2.Columbia University in the City of New York

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    隐马尔科夫模型(HMM)在降雨模拟中未能考虑影响降雨动态变化的外部因素。因此,本研究引入贝叶斯非齐次隐马尔科夫模型(Bayesian-NHMM)来考虑影响降雨的外部因素,如降雨季节性特征和大尺度大气环流因子。本研究对京津冀地区1979—2018年6-9月内日降雨进行模拟与预测,考虑了东亚夏季风指数(EASM)、太平洋年代际振荡(PDO)、印度洋偶极子(IOD)、北大西洋涛动(NAO)、厄尔尼诺指数(El Ni?o)和南方涛动指数(SOI)等了多个大尺度大气环流因子的影响,此外,首次引入降雨季节性特征来表征京津冀6-9月日降雨的年内变化,以期提升模型的性能。结果表明,(1)Bayesian-NHMM模型表现优于传统的HMM模型。(2)降雨季节性特征和南方涛动(SOI)是京津冀日降雨动态变化的主要外部影响因子组合。(3)引入降雨季节性特征后,Bayesian-NHMM模型更有效地识别出京津冀地区日降雨的季节性变化规律。Bayesian-NHMM模型可以显著提升京津冀地区日降雨的模拟和预测精度,并可便捷地应用于我国其他流域和城市群。

    Abstract:

    The Hidden Markov Model (HMM) failed to consider external factors that influence the dynamic changes in rainfall. Therefore, the Bayesian Non-Homogeneous Hidden Markov Model (Bayesian-NHMM) was introduced in this study to account for such factors, including seasonal rainfall characteristics and large-scale atmospheric circulation factors. Daily rainfall during the rainy season in the Beijing-Tianjin-Hebei region from 1979 to 2018 was simulated and predicted, considering the impacts of several large-scale atmospheric circulation factors, such as the East Asian Summer Monsoon Index, the Pacific Decadal Oscillation, the Indian Ocean Dipole, the North Atlantic Oscillation, the El Ni?o Index, and the Southern Oscillation Index (SOI). Additionally, seasonal rainfall characteristics were introduced for the first time to represent the intra-annual variation in daily rainfall during the rainy season in this region. The results indicated that: (1) The Bayesian-NHMM model outperformed the traditional HMM model; (2) Seasonal rainfall characteristics and SOI were identified as the main external factors influencing the dynamic changes of the daily rainfall in the Beijing-Tianjin-Hebei region; (3) After incorporating the seasonal rainfall characteristics, Bayesian-NHMM model is able to identify the seasonal variation patterns of daily rainfall in the region more effectively. Bayesian-NHMM model can significantly improve the accuracy of daily rainfall simulation and prediction in the Beijing-Tianjin-Hebei region and can be easily applied to other river basins and urban agglomerations in China.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-20
  • 最后修改日期:2024-12-11
  • 录用日期:2024-12-17
  • 在线发布日期:
  • 出版日期: