基于变分贝叶斯卷积单控记忆网络的径流概率预报研究
DOI:
作者:
作者单位:

中国长江三峡集团有限公司

作者简介:

通讯作者:

中图分类号:

P338

基金项目:

国家自然科学基金项目;湖北省博士后项目资助


Probabilistic forecasting for runoff based on Variation Bayesian Convolutional Single Control Memory Neural Network
Author:
Affiliation:

China Three Gorges Corporation

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    可靠高精度的径流长预见期概率预报可为水库调度和决策提供信息。本文围绕如何仅采用历史降雨、蒸发和径流数据完成长预见期预报、提高径流预报精度、量化预报不确定性等开展研究。采用最大平移相关系数法分析上游站点流量演进到下游站点的传播时间;然后将上游、下游、支流历史流量以及区间历史降雨与蒸发变量构建为三维张量形式;提出基于卷积单控记忆神经网络(ConvSCM)的确定性预报模型,并结合变分贝叶斯推理框架构建径流概率预报模型BConvSCM。将本文提出的模型应用于长江流域中下游径流预报,结果表明:(1)在缺少降雨预报数据时,概念水文预报模型仅能完成1个时段预见期的预报,而BConvSCM模型可完成径流的长预见期预报;(2)BConvSCM模型的均值预报结果确定性系数比传统概念水文模型平均提高约2.86%,比现有深度学习模型平均提高0.68%,且获取了合适的径流预报概率密度函数。该研究成果可为径流长预见期概率预报提供参考。

    Abstract:

    Reliable and high precision multi-step ahead probabilistic forecasting of runoff can provide information for reservoir operation and decision-making. This study focuses on relying only on historical precipitation and evaporation data to complete the multi-step ahead forecasting, improving the runoff prediction accuracy, and quantifying the forecasting uncertainty. Firstly, the maximum translational Pearson Correlation Coefficient method is used to analyze the lag time of flow evolution from upstream station to downstream station. Then, the upstream, downstream, tributary historical runoff and interval historical precipitation and evaporation variables are constructed as three-dimensional tensors. Moreover, a deterministic forecasting model based on Convolutional Single Control Memory (ConvSCM) Neural Network is proposed. Furthermore, the probabilistic forecasting model BConvSCM is obtained by combining ConvSCM with the variational Bayesian framework. Finally, the model proposed in this study is applied to the middle and lower reaches of Yangtze River Basin. The experimental results and conclusions are as follows: (1) In the absence of rainfall forecasting data, the conceptual hydrological forecasting model can only complete single-step ahead forecasting, while the BConvSCM model can complete multi-step ahead forecasting. (2) The average determination coefficient of BConvSCM model’s mean predictions is 2.86% higher than that of traditional conceptual hydrological model, and 0.68% higher than that of existing deep learning model. And BConvSCM model can forecast suitable probability density function of runoff. The research results can provide reference for multi-step ahead probabilistic forecasting of runoff.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-03
  • 最后修改日期:2025-01-17
  • 录用日期:2025-01-21
  • 在线发布日期:
  • 出版日期: