基于图神经网络的地下水位动态模拟模型
DOI:
作者:
作者单位:

1.水利部信息中心;2.河海大学

作者简介:

通讯作者:

中图分类号:

P345

基金项目:

国家重点研发计划(2021YFB3900604/2021YFC3200501)


Dynamic Simulation Model of Groundwater Level Based on Graph Neural Networks
Author:
Affiliation:

1.Information Center of the Ministry of Water Resources;2.Hohai University

Fund Project:

The National Key Technologies R&D Program of China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    地下水既是经济资源和战略资源,又是维持生态系统的重要因子。因此,地下水位的模拟精度在可持续的地下水资源利用和管理中起着重要的作用。机器学习方法可以捕获输入变量和目标变量之间的非线性关系,在地下水位模拟得到了广泛的应用。然而,传统的机器学习方法没有考虑站与站之间的空间关系,难以处理监测站分布不规则的非结构化监测数据。本文使用图神经网络(GNN)来模拟地下水位动态变化,每个监测站都可以作为图中节点,节点之间的连接通过邻接矩阵确定。选择河北省典型漏斗区的监测数据对该模型进行了应用和评价。与三个对照模型:随机森林(RF)、支持向量机(SVR)和多层感知机(MLP)相比,所提出的模型在所定义的评估指标方面均表现更好。此外,因为所提出的模型可以同时模拟建模系统中所有监测站的地下水位变化,相比单站模型具有更高的数据利用率。

    Abstract:

    Groundwater serves as both an economic and strategic resource, as well as a crucial factor in maintaining ecosystems. Therefore, the accuracy of groundwater level simulation plays a significant role in sustainable groundwater resource utilization and management. Machine learning methods have been widely applied in groundwater level simulation for capturing the nonlinear relationships between input variables and target variables. However, traditional machine learning methods do not consider the spatial relationships between stations, making it challenging to handle unstructured monitoring data with irregular station distributions. In this study, we employ Graph Neural Networks (GNN) to simulate the dynamic changes in groundwater levels, where each monitoring station can be represented as a node in the graph, and the connections between nodes are determined by adjacency matrices. The proposed model is applied and evaluated using monitoring data from a typical groundwater depression zone in Hebei Province. Compared with three benchmark models, Random Forest (RF), Support Vector Machine (SVM), and Multi-layer Perceptron (MLP), the proposed model demonstrates better performance in the defined evaluation metrics. Additionally, the proposed model has higher data utilization efficiency compared to single-station models as it can simultaneously simulate the groundwater level changes at all monitoring stations in the modeling system.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-24
  • 最后修改日期:2024-09-18
  • 录用日期:2024-09-26
  • 在线发布日期:
  • 出版日期: