基于LSTM模型的南果河流域日径流预测
DOI:
作者:
作者单位:

1.云南省水文水资源局昆明分局;2.云南大学国际河流与生态安全研究院;3.云南省国际河流与跨境生态安全重点实验室;4.云南省水文水资源局西双版纳分局

作者简介:

通讯作者:

中图分类号:

P33;TV11

基金项目:

国家自然科学基金项目(32060831);云南省万人计划项目(QNBJ2018166);云南大学研究生人才培养模式改革计划项目(CZ22622203)


Daily Runoff Prediction in the Nanguo River Basin Based on the LSTM Model
Author:
Affiliation:

1.Kunming Branch of Yunnan Hydrology and Water Resources Bureau;2.Institute of International Rivers and Eco-security, Yunnan University;3.Yunnan Key Laboratory of International Rivers and Transboundary Eco-security;4.Xishuangbanna Branch of Yunnan Hydrology and Water Resources Bureau

Fund Project:

The National Natural Science Foundation of China(32060831)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    准确可靠的径流预测是水资源科学调度、高效利用的有力保障。数据驱动水文模型弱化水文循环物理过程,通过训练建立输入和输出之间的数学关系,为无下垫面资料流域径流预测提供解决方案。本文以澜沧江一级支流南果河为例,利用主成分分析(PCA)对样本数据进行降维处理,并基于长短期记忆神经网络(LSTM)模型,将当前时刻t前L日逐日径流量、前L日逐日降水量作为模型的输入,t+K时刻日径流量作为输出,对那勾坝水文站日径流进行1~5d不同预见期的预测。结果表明:随预见期延长,模型预测精度不断下降。当预见期为1d时,验证期和训练期纳什效率系数(NSE)均大于0.80,预测性能优于反向传播神经网络(BP)、支持向量机(SVM)与随机森林法(RF)三种数据驱动模型,为无下垫面资料流域日径流预测提供新思路,并为实现中长期径流精准预测提供了新的思路和参考案例。

    Abstract:

    Accurate and reliable runoff prediction is a powerful guarantee for the scientific scheduling and efficient utilization of water resources. Data-driven hydrological models weaken the physical processes of the hydrological cycle and establish the mathematical relationship between input and output through training, providing a solution for runoff prediction in watersheds without underlying surface data. Taking the Nanguo River, a first-level tributary of the Lancang River, as an example, this paper utilizes Principal Component Analysis (PCA) to conduct dimensionality reduction on the sample data.Based on the Long Short-Term Memory (LSTM) model, the daily runoff and daily precipitation of the previous L days before the current moment t are taken as the inputs of the model, and the daily runoff at moment t + K is taken as the output, to predict the daily runoff of the Nagouba Hydrological Station with different lead times ranging from 1 to 5 days. The results show that the prediction accuracy of the model decreases continuously with the extension of the lead time. When the lead time is 1-d, the Nash-Sutcliffe Efficiency (NSE) coefficients in both the verification period and the training period is greater than 0.80. The prediction performance is better than that of the three data-driven models of Back Propagation Neural Network (BP), Support Vector Machine (SVM), and Random Forest (RF), providing a new idea for the daily runoff prediction of watersheds without underlying surface data and a new ideas and reference cases for achieving accurate prediction of medium and long-term runoff.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-15
  • 最后修改日期:2024-11-26
  • 录用日期:2024-11-27
  • 在线发布日期:
  • 出版日期: