基于LSTM神经网络模型的河道洪水反流向演算
DOI:
作者:
作者单位:

1.长江勘测规划设计研究有限责任公司;2.华中科技大学土木与水利工程学院;3.长江水利委员会智慧长江创新团队

作者简介:

通讯作者:

中图分类号:

P333

基金项目:

基于数字孪生技术的南水北调中线水源区水碳耦合模拟研究(U2340207);水工程调度模型标准化构建技术研究(SKR-2022014);西藏自治区科技计划项目“雅鲁藏布江流域水文动力特性解析及多维时空尺度径流预报”(ZYYD2023000130)


Flood Inverse-routing in River Channel Based on LSTM Neural Network
Author:
Affiliation:

1.Changjiang Survey Planning Design and Research Co,Ltd;2.School of Civil and Hydraulic Engineering,Huazhong University of Science and Technology;3.Smart Changjiang Innovation Team,Changjiang Water Resources Commission

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    河道洪水反流向演算在库群-河道联合防洪调度中具有重要作用,若直接采用马斯京根进行反向演算,存在演算结果不稳定、精度不佳等问题,难以运用于工程实际。提出一种基于LSTM神经网络模型的河道洪水反流向演算方法,建立河道上、下游断面的流量非线性映射关系模拟模型,并通过历史实测洪水资料对模型进行训练,进而实现由下游断面洪水过程反推上游断面入流过程。模型应用于汉江下游河段,结果表明,基于LSTM神经网络模型的河道洪水反流向演算方法反演结果与上游断面实际入流过程接近,相较于BP神经网络和支持向量回归方法具有更优的反演精度,证明了模型的实用性和有效性。

    Abstract:

    Calculation of reserves flood routing plays a significant role in joint flood control of reservoirs and river channels. Application of the Muskingum method for reverse calculation may lead to unstable results and poor accuracy, making it unsuitable for practical engineering applications. This paper proposes a flood inverse-routing method based on the Long Short-Term Memory (LSTM) neural network model. This paper establishes a simulation model of the nonlinear relationship between flow in the upstream and downstream sections of the river channel, and trains the model using the historical flood data, thereby achieving the retrograde estimation of the upstream inflow process from the downstream flood process. The Han River was selected for the case study. Results show that the outcomes of the flood inverse-routing method based on the LSTM neural network model closely align with the actual inflow process at the upstream cross-section and outperform those obtained by the BP neural network and Support Vector Regression inversion methods. This demonstrates the practicality and effectiveness of the proposed model.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-24
  • 最后修改日期:2025-04-07
  • 录用日期:2025-04-08
  • 在线发布日期:
  • 出版日期: