人工神经网络在塔里木河中游流量预测中的应用
DOI:
作者:
作者单位:

新疆农业大学水利与土木工程学院

作者简介:

通讯作者:

中图分类号:

TV123;P333

基金项目:

新疆维吾尔自治区重点研发项目(2022B03024-2)


Application of Artificial Neural Networks in the Flow Prediction of the Mainstream of Tarim River
Author:
Affiliation:

Xinjiang Agricultural University,College of Water Resources and Civil Engineering

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    塔里木河中游河道岔道多、河水漫溢严重,为应对水文测站稀少且相距较远所引起的流量数据不足的问题,分别在定床与动床工况下提出了基于BP及RBF两种人工神经网络的塔里木河干流河道的流量预测模型。结果表明:在定床工况下,两种预测模型均表现出较好的适应性,其中四变量(水深、水面宽、平均流速、水力半径)的预测模型准确性最高,模型准确度随着变量数量减少而下降;在动床工况下,BP预测模型准确性高于RBF模型;使用三变量及四变量训练的BP模型均能较好的预测流量,但三变量(水深、水面宽、平均流速)的数据获取更为便捷,方便使用。本研究可为塔里木河干流河道流量预测提供新思路,对河流管理、防洪减灾以及水资源合理配置具有实际意义。

    Abstract:

    In the middle reaches of the Tarim River, there are many branches and serious overflow of water. To address the issue of insufficient flow data caused by the scarcity and distance of hydrometric stations, the flow prediction models based on BP and RBF artificial neural networks were proposed under the fixed bed and movable bed conditions respectively in the main stream of the Tarim River. The results show that both of the two models have good adaptability under the fixed bed condition. The prediction model of four variables (water depth, water surface width, average flow velocity and hydraulic radius) has the highest accuracy, and the accuracy of the model decreases with the decrease of the number of variables. Under the movable bed condition, the accuracy of BP model is higher than that of RBF model. The BP model trained by three or four variables can better predict the flow rate, but the acquisition of three variables (water depth, water surface width, average flow rate) are convenient. This study could provide new ideas and methods for the river flow prediction in the main stream of the Tarim River, and has practical significance for river management.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-18
  • 最后修改日期:2024-10-23
  • 录用日期:2024-10-28
  • 在线发布日期:
  • 出版日期: