基于Multi-Head Attention机制优化的Bi-LSTM模型河道汇流过程模拟
DOI:
作者:
作者单位:

1.北京市水科学技术研究院;2.首都师范大学

作者简介:

通讯作者:

中图分类号:

P338;P333.1

基金项目:

北京市自然科学基金资助项目(8232032);国家自然科学基金项目(52209005)


Simulation of River Confluence Processes Using a Bi-LSTM Model Optimized with Multi-Head Attention Mechanism
Author:
Affiliation:

1.Beijing Water Science and Technology Institute;2.China;3.Capital Normal University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    高效、准确的开展河道汇流演算对科学开展水资源调度具有十分重要的意义。为有效提取河道径流时间序列信息特征,提高河道汇流过程模拟预测的非线性拟合能力,本研究构建一种融合双向长短期记忆网络(Bi-LSTM)、多头注意力机制(Multi-Head Attention)、前馈神经网络(FFNN)的河道汇流预测模型(MABLFN)。为验证MABLFN模型有效性,以永定河山峡段典型站点实测数据开展实例验证,并将预测结果与单一的LSTM、Bi-LSTM模型和具有物理机制的MIKE11模型预测结果进行对比分析,评估模型不同预见期径流过程预测性能。结果表明:MABLFN模型能够较好的预测不同预见期的河道径流过程,在预测精度上相较于单一Bi-LSTM模型、LSTM模型和MIKE11模型,均方误差MSE降低了2%~76%,均方误差根RMSE降低了1%~51%,绝对平均误差MAE降低了34%~42%,纳什系数NSE提高了9%~10%;在计算耗时方面MABLFN模型相比于LSTM模型、Bi-LSTM模型计算耗时由0.26s增加至1.2s,相比于MIKE11模型计算耗时由360s降低至1.2s。

    Abstract:

    Efficient and accurate performance of river runoff calculation is of paramount importance for water resources optimal operation. To effectively extract the characteristics of river runoff time series information and enhance the nonlinear fitting capability of river confluence process simulation and prediction, a river confluence prediction model (MABLFN) integrating Bi-directional Long Short-Term Memory network (Bi-LSTM), Multi-Head Attention mechanism, and Feed-Forward Neural Network (FFNN) is proposed. To validate the effectiveness of the MABLFN model, a case study was conducted using measured data from typical stations in the mountainous section of the Yongding River. And the prediction results of MABLFN model were compared and analyzed with those of standalone LSTM, Bi-LSTM models, and the MIKE11 model, assessing the predictive performance of the model for runoff processes across different forecast period. The results indicate that the MABLFN model can predict river runoff processes across different forecast lead times with improved accuracy. Compared to the standalone Bi-LSTM, LSTM, and MIKE11 models, the Mean Squared Error (MSE) is reduced by 2% to 76%, the Root Mean Squared Error (RMSE) is decreased by 1% to 51%, the Mean Absolute Error (MAE) is lowered by 34% to 42%, and the Nash-Sutcliffe Efficiency (NSE) is increased by 9% to 10%. In terms of computational time, the MABLFN model requires 1.2 seconds, which is slightly longer than the 0.26 seconds needed by LSTM and Bi-LSTM models but significantly shorter than the 360 seconds needed by the MIKE11 model.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-12
  • 最后修改日期:2024-10-10
  • 录用日期:2024-10-11
  • 在线发布日期:
  • 出版日期: