复杂水流条件下侧扫雷达流量在线监测精度提升研究
DOI:
作者:
作者单位:

1.水利部南京水利水文自动化研究所;2.江苏省溧阳市江南工程检测有限公司;3.北京密云水库管理处;4.云南省水文水资源局西双版纳分局;5.江苏宁沪高速公路股份有限公司

作者简介:

通讯作者:

中图分类号:

P332

基金项目:

国家重点研发计划(2023YFC3006700);国家自然科学基金重大研究计划重点支持项目(92047203);水利部重大科技项目(SKS-2022045)


Improving Flow Calculation Accuracy of Side-scanning Radar Online Monitoring System under Complex Water Conditions
Author:
Affiliation:

1.Nanjing Research Institute of Hydrology and Water Conservation Automation,Ministry of Water Resources;2.Liyang Jiangnan Engineering Testing Company Limited;3.Beijing Miyun Reservoir Management Office;4.Yunnan Hydrological and water Resources Bureau,Xishuangbanna Branch Office;5.Jiangsu Expressway Company Limited

Fund Project:

National Key R&D Program of China, grant number 2023YFC3006700; The National Natural Science Foundation of China (Major Research Plan), grant number 92047203; Major science and technology project of the Ministry of Water Resources, grant number SKS-2022045.

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    侧扫雷达流量在线监测能够提高监测效率和质量、扩大监测范围和密度,但在水利工程影响等复杂水流条件下,其应用精度面临挑战。综合考虑各种流量影响因素,分别构建基于多元线性回归模型、机器学习最小绝对收缩和选择算子(LASSO)模型、深度学习长短记忆网络(LSTM)模型的侧扫雷达流量在线监测精度提升方案,并进行比较分析。在允景洪水文站的应用表明:(1)三种推流方案均满足规范要求,可为允景洪水文站及类似受水利工程影响测站的侧扫雷达推流方案构建提供参考。(2)LASSO模型最优,较常规方法精度提升了22.93%;多元回归模型精度略低于LASSO模型,但构建简单、方便,适用于需要快速便捷推流的情况;LSTM模型虽然复杂度最高,但精度却最低。研究结果可为侧扫雷达推流方案的改进和优化提供新的思路和方法。

    Abstract:

    Side-scanning radar flow online monitoring can improve the monitoring efficiency and quality, expand the monitoring range and density, but its application accuracy is challenged under complex water conditions such as those affected by water conservancy projects. In this paper, various flow influencing factors are considered comprehensively, and the flow calculation schemes of side-scanning radar online monitoring system based on multiple linear regression model, machine learning Least Absolute Shrinkage and Selection Operator(LASSO) model, and deep learning Long Short Term Memory(LSTM) model are constructed respectively, and compared and analyzed. The application in Yunjinghong Hydrological Station shows that: the three flow calculation schemes meet the specification requirements, and can provide reference for the side-scanning radar flow calculation scheme of Yunjinghong Hydrological Station and similar stations affected by water conservancy projects; the LASSO model is the best, and the accuracy is improved by 22.93% compared with the conventional method; the accuracy of the multivariate regression model is a little bit lower than that of the LASSO model, but the construction is simple, easy, and is suitable for the need to quickly and conveniently calculate the flow rate; the LSTM model is the highest in complexity but has the lowest accuracy. This study can provide new ideas and methods for the improvement and optimization of the side-scan radar flow calculation scheme.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-30
  • 最后修改日期:2024-07-09
  • 录用日期:2024-07-10
  • 在线发布日期:
  • 出版日期: