基于数据驱动的地下水-地表水耦合模拟
DOI:
作者:
作者单位:

1.国家能源集团宁夏煤业有限责任公司安全环保监察部;2.南京大学地球科学与工程学院

作者简介:

通讯作者:

中图分类号:

P641.6 P343

基金项目:

国家重点基础研究发展计划(973计划)


Data-driven coupled groundwater-surface water modelling
Author:
Affiliation:

1.Safety and Environmental Protection Supervision Department, National Energy Group Ningxia Coal Co., Ltd;2.School of Earth Sciences and Engineering, Nanjing University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    地下水-地表水耦合模型是定量刻画地下水地表水相互作用及流域水文循环的重要工具。随着人工智能的兴起,基于数据驱动的机器学习方法在地表水或地下水模拟领域取得重要进展,克服了传统水文数值模型面临的困难。然而,目前尚未见到基于数据驱动方法的同时进行地表径流和地下水位预测的地下水-地表水耦合模型。本研究提出基于深度学习的地下水-地表水耦合模拟技术,利用多任务卷积神经网络(CNN)和长短期记忆神经网络(LSTM)方法,以美国加利福尼亚州的Sagehen流域为研究区,构建基于数据驱动的地下水-地表水耦合模拟模型来预测研究区河流日径流量和地下水位。结果表明,基于CNN和LSTM建立的深度学习模型对地表径流量模拟结果的纳什效率系数(NSE)为0.8094,对研究区地下水水位模拟结果的NSE高于0.81,模拟效果较好。研究成果可为流域地下水-地表水耦合模拟提供新思路。

    Abstract:

    The coupled groundwater-surface water model is an essential tool for quantitatively characterizing the interactions between groundwater and surface water as well as hydrological processes in watersheds. With the rise of artificial intelligence, data-driven machine learning methods have made significant advancements in the field of surface water or groundwater simulation, overcoming challenges faced by traditional hydrological numerical models. However, a data-driven groundwater-surface water coupling model that simultaneously predicts both surface runoff and groundwater levels has not been observed thus far. By combining multitask Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) neural networks, this study construct a data-driven coupled model for the Sagehen watershed, simultaneously predicting river runoff and groundwater levels. The results indicate that the deep learning model established on CNN and LSTM achieves a Nash-Sutcliffe Efficiency coefficient (NSE) of 0.8094 for simulating surface runoff and an NSE higher than 0.81 for simulating groundwater levels in the study area, demonstrating satisfactory simulation performance. The findings of this research offer new insights into watershed groundwater-surface water coupling simulation, thereby contributing to the advancement of this field.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-18
  • 最后修改日期:2024-09-29
  • 录用日期:2024-10-08
  • 在线发布日期:
  • 出版日期: