基于机器学习的气象水质耦合预测模型研究
DOI:
作者:
作者单位:

黑龙江大学

作者简介:

通讯作者:

中图分类号:

X832

基金项目:

黑龙江省普通本科高等学校青年创新人才培养计划(UNPYSCT-2020012)


Machine learning-based coupled prediction modeling of meteorological water quality
Author:
Affiliation:

1.Heilongjiang University;2.黑龙江省哈尔滨市南岗区学府路74号黑龙江大学

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了更好地预测河流水质,以黑龙江省内16个水质监测站点的日尺度水质数据和日尺度气象站数据为基础,通过核主成分分析(KPCA)对水质数据的特征值提取并进行降维,采用斯皮尔曼相关性分析(Spearman)筛选强相关的气象因子,并将强相关气象因子和水质指数(WQI)作为模型输入数据,结合随机森林(RF)、多层感知机(MLP)、广义回归神经网络(GRNN)构建三种气象水质耦合预测模型,并进行对比验证。结果表明GRNN预测效果最佳,R2=98.68%,对16个站点水质情况的准确度高达87.50%,可以为政府水资源治理提供决策依据。

    Abstract:

    To better predict river water quality, this study utilized daily scale water quality data from 16 monitoring stations and daily meteorological data within Heilongjiang Province as the foundation. By employing Kernel Principal Component Analysis (KPCA) for feature extraction and dimensionality reduction of water quality data, Spearman's correlation analysis was used to screen for strongly correlated meteorological factors. These factors, along with the Water Quality Index (WQI), were taken as input data for the models. Three meteorological-water quality coupling prediction models were constructed using Random Forest (RF), Multilayer Perceptron (MLP), and Generalized Regression Neural Network (GRNN), and were compared and validated. The results indicated that the GRNN model had the best predictive performance, with an R-squared (R2) of 98.68% and an accuracy of 87.50% for the water quality conditions of the 16 stations, providing a basis for government decision-making in water resource management.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-02
  • 最后修改日期:2024-06-13
  • 录用日期:2024-06-19
  • 在线发布日期:
  • 出版日期: