水流物理规律与人工智能算法相结合的水位流量关系确定方法研究
DOI:
作者:
作者单位:

1.河海大学水文水资源学院;2.长江水利委员会水文局;3.江苏省水利科学研究院

作者简介:

通讯作者:

中图分类号:

P332

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Research on the Determination Method of Stage-Discharge Relation Based on the Combination of Physical Flow Law and Artificial Intelligence Algorithm
Author:
Affiliation:

1.Bureau of Hydrology, Changjiang Water Resources Commission,;2.College of Hydrology and Water Resources, Hohai University;3.Jiangsu Hydraulic Research Institute

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    确定水位流量关系的传统方法主要基于物理规律和经验公式建模,模型精度有限,同时受个人经验和水平的影响,结果精度常常具有较大的不确定性;机器学习方法通过训练模型自动学习水位与流量关系,具有灵活性和适应性,但缺乏对物理规律的解释和理解,并对数据质量和数量要求较高。本文提出水流物理规律与人工智能算法相结合的水位流量确定方法,通过结合水文站点水位与上下游站点的落差及机器学习模型构建流量计算方案,以此确定水位流量关系;以汉口站作为试验站,并比较MLP与LSTM两种不同的机器学习模型计算结果。结果表明,水流物理规律与人工智能算法相结合的水位流量关系确定方法,能够准确推求流量,绘制水位流量关系曲线,同时LSTM模型计算结果精度较高,汉口站2018—2020年的模型计算结果决定系数均在0.9950以上,平均相对误差均在3%以内。

    Abstract:

    The traditional method of determining the relationship between water level and discharge is mainly based on physical law and empirical formula modeling, the accuracy of the model is limited, and the accuracy of the result is often uncertain due to personal experience and level. Machine learning methods can automatically learn the relationship between water level and flow through training models, which has flexibility and adaptability, but lacks interpretation and understanding of physical laws, and requires high data quality and quantity. This paper proposes a method to determine water level and discharge by combining the physical law of water flow with artificial intelligence algorithm. By combining the water level of hydrological stations with the drop of upstream and downstream stations and machine learning model, a flow calculation scheme is constructed to determine the stage-discharge relation. The experimental results of MLP model and LSTM model are compared in Hankou Station. The results show that the stage-discharge relation determination method combined with the physical law of water flow and artificial intelligence algorithm can accurately calculate the flow rate and draw the water level and discharge relationship curve. Meanwhile, the accuracy of LSTM model calculation results is high, and the R2 of the model calculation results of Hankou Station from 2018 to 2020 is above 0.9950, and the MAPE is less than 3%.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-21
  • 最后修改日期:2024-05-24
  • 录用日期:2024-06-17
  • 在线发布日期:
  • 出版日期: