地表水监测缺失数据多重插补方法比较及应用
DOI:
作者:
作者单位:

兰州财经大学

作者简介:

通讯作者:

中图分类号:

P333.P

基金项目:


Performance and Application of Surface Water Observation Missing Data Multiple Imputation Methods
Author:
Affiliation:

Lanzhou University of Finance and Economics

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    国控地表水监测数据的完整性和准确性对于水环境治理的效果和长远发展具有重要意义。对比分析2种单一插补(均值插补、KNN)、7种多重插补(MF、MICE、blasso、norm、norm.boot、norm.nob、ri)等9种方法在地表水监测数据中的适用性和有效性。针对2020—2022年天津市武清北运河土门楼断面的7个地表水指标进行9种方法插补性能评估,并对相同指标的实际缺失数据进行了实证分析。结果表明:在不同缺失率下,贝叶斯lasso多重插补法(blasso)的插补效果更优,它能够最大程度的利用各指标的辅助变量以及先验信息提高插补精度,且收敛速度快,插补时间可控。

    Abstract:

    The integrity and accuracy of national surface water monitoring data are of great significance for the effectiveness and long-term development of water environment management. Comparative analysis of the applicability and effectiveness of nine methods including two kinds of single imputation (Mean Imputation and KNN) and seven kinds of multiple imputation methods (MF, MICE, blasso, norm, norm.boot, norm.nob, ri) in surface water monitoring data. The imputation performance of 7 surface water indicators in Tumenlou section of Beiyun River, Wuqing District, Tianjin from 2020 to 2022 was evaluated by 9 methods, and the actual missing data of the same indicators were analyzed empirically. The results showed that the Bayesian Lasso multiple imputation method produced superior imputation results. It maximizes the utilization of auxiliary variables and prior information of various indicators to improve imputation accuracy. Additionally, Bayesian Lasso has a fast convergence speed and controllable imputation time.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-12
  • 最后修改日期:2024-05-16
  • 录用日期:2024-05-28
  • 在线发布日期:
  • 出版日期: