基于MWST-DFS-K2算法的洱海水环境风险溯源研究
DOI:
作者:
作者单位:

1.昆明理工大学;2.上海勘测设计研究院有限公司

作者简介:

通讯作者:

中图分类号:

TV213

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目),国家重点基础研究发展计划(973计划),中国科学院重点资助项目,中国科学院重大资助项目,中国科学院知识创新项目,中国科学院百人计划项目,中国博士后科学基金,香港、澳门青年学者合作研究基金,海外青年学者合作研究基金,国家科技攻关计划


Traceability study of water environment risk in Erhai Sea based on MWST-DFS-K2 algorithm
Author:
Affiliation:

1.Kunming University of Science and Technology;2.Shanghai Investigation, Design &3.Research Institute Co

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对湖泊流域水环境污染责任量化模糊,难以准确科学进行管理及监督的问题,本文采用贝叶斯网络结构和K2算法学习,通过最大支撑树(MWST)得到最大父节点数,再由深度优先搜索算法(DFS)得到节点序,提出一种可对流域不确定性污染源进行责任量化的改进MWST-DFS-K2算法。基于此算法以洱海为实例验证构建流域污染物贝叶斯网络模型图,对其进行污染物量化分析后得出结论为,江尾站对流域内其他站点的污染贡献达90%以上,四级坝站水质次于Ⅱ类的概率为82%,该站本身存在较大水质问题,后续管理过程中应重点关注洱海流域出湖处水文站点四级坝站与入湖处水文站点江尾站周围的污染源。与传统溯源方法相比,该方法不仅弥补了对污染源不确定性分析的不足,还对污染源进行了科学的污染责任量化,能够为高原湖泊流域的污染物溯源研究提供参考。

    Abstract:

    In order to address the problem of vague responsibility quantification of water environment pollution in lake basin, which is difficult to manage and supervise accurately and scientifically, this paper adopts the Bayesian network structure and K2 algorithm to learn, and obtains the maximum number of parent nodes through the Maximum Support Tree (MWST), and then obtains the node order by the Depth-First Search Algorithm (DFS) to put forward a kind of improved MWST-DFS- algorithm that can quantify the responsibility of uncertain pollution sources in the watershed. K2 algorithm. Based on this algorithm, a Bayesian network model is constructed for the Erhai Sea as an example, and after analyzing the quantification of pollutants, it is concluded that Jiangwei station contributes more than 90% to the pollution of other stations in the watershed, and the probability that the water quality of the fourth-level dam station is less than Class II is 82%, and there are large water quality problems at the station itself, so the subsequent management process should be focused on the water quality of the Erhai Basin, which should be compared with the water quality of the fourth-level dam station and the lake inlet. In the subsequent management process, attention should be focused on the pollution sources around the Fourth Level Dam Station and the Jiangwei Station, which are hydrological stations in the lake. Compared with the traditional traceability methods, this method not only makes up for the lack of uncertainty analysis of pollution sources, but also quantifies the scientific pollution responsibility of pollution sources, which can provide a reference for the study of pollutant traceability in plateau lake basins.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-22
  • 最后修改日期:2024-05-19
  • 录用日期:2024-06-19
  • 在线发布日期:
  • 出版日期: