基于LSTM、RF、SVR三种机器学习方法的径流预测研究
DOI:
作者:
作者单位:

1.扬州大学水利科学与工程学院;2.水利部水文气象灾害机理与预警重点实验室;3.河海大学水灾害防御全国重点实验室

作者简介:

通讯作者:

中图分类号:

P338

基金项目:

国家自然科学基金资助项目(42371021,52109036,52379007);河海大学水灾害防御全国重点实验室“一带一路”水与可持续发展科技基金面上项目(2022491111, 2021490611);水利部水文气象灾害机理与预警重点实验室开放基金(HYMED202203, HYMED202210);江苏省研究生科研与实践创新计划项目(KYCX23_3546; KYCX23_3549)


Runoff prediction based on LSTM, RF and SVR machine learning methods
Author:
Affiliation:

1.College of Hydraulic Science and Engineering, Yangzhou University;2.Key Laboratory of Hydrometeorological Disaster Mechanism and Warning of Ministry of Water Resources, Nanjing University of Information Science &3.Technology;4.The National Key Laboratory of Water Disaster Prevention, Hohai University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为探究不同预报方案对机器学习模型径流预测的影响,以淮河王家坝~蒋家集~润河集区间流域为例,设计了七种径流预测方案,采用LSTM(长短期记忆神经网络)、RF(随机森林)以及SVR(支持向量回归)三种机器学习模型进行径流预测。研究结果表明:(1)三种机器学习模型对降雨信息的敏感程度不同,且采用同时考虑径流影响因素以及前期历史径流的方案预测效果最佳,但随着预见期的延长,前期历史径流的重要性逐渐降低;(2)三种机器学习模型在不同预见期的径流预测表现有所差异:三种机器学习模型在预见期为1 d时预测精度均较高;当预见期为2~4 d时,SVR模型的预测效果较好;RF模型在预见期为5~7 d时预测精度较高。研究可为后续基于机器学习的径流预测提供参考。

    Abstract:

    To explore the impact of different prediction schemes on the runoff prediction of machine learning models, the interval watershed (Wangjiaba~Jiangjiaji~Runheji) of Huaihe River Basin was taken as an example. In this study, we designed seven runoff prediction schemes and used three machine learning models —— LSTM (Long Short-Term Memory neural network), RF (Random Forest) and SVR (Support Vector Regression) to predict the runoff in the interval watershed. The results show that: (1) the sensitives of three machine learning models to rainfall information is different. The best scheme is that considering both runoff influencing factors and prior historical runoff. However, the importance of prior historical runoff diminishes when extending lead time. (2) The performance of the three machine learning models for runoff prediction is different with different lead time. The three machine learning models all perform well with 1-day lead time, SVR performs better with 2~4 days lead time and better performance for RF when lead time is 5~7 days. The study can provide a reference for the runoff prediction based on the machine learning.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-17
  • 最后修改日期:2024-04-19
  • 录用日期:2024-05-14
  • 在线发布日期:
  • 出版日期: