基于多种Copula函数的平陆运河上游郁江段雨洪遭遇综合分析
DOI:
作者:
作者单位:

1.广西大学;2.广西珠委南宁勘测设计院有限公司

作者简介:

通讯作者:

中图分类号:

TV122

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目),广西科技重大专项资助


Comprehensive analysis of rainfall-flood encounter in the Yujiang river section of the upper Pinglu Canal based on multiple copula functions
Author:
Affiliation:

1.Guangxi University;2.Guangxi Zhuwei Nanning Survey Designing Institute

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为辨识平陆运河上游郁江段雨洪关系并揭示暴雨-洪水遭遇概率,采用多种Copula函数构建了区域年最大1日降雨量和最大洪峰流量的联合分布模型,并引入图形评价法、欧式平方距离和OLS 准则优选最佳模型,进而定量揭示典型情境下的区域雨洪遭遇概率和条件最可能组合。结果表明:Clayton型分布模型是雨洪联合分布拟合度最优的二维 Copula函数,欧式平方距离和OLS准则分别达到0.120和0.044;暴雨-洪水联合风险高,联合风险概率是同期单暴雨发生或单洪水发生概率的1.5倍;0.5%、1%、2%的典型暴雨情景下,对应最可能洪水概率分别为0.6%、1.3%、2.6%,平陆运河上游郁江段防洪任务艰巨。

    Abstract:

    To identify the rainfall-flood relationship and reveal the probability of storm-flood encounters in the Yujiang river section of the upper Pinglu Canal, this study adopted a variety of Copula functions to construct a joint distribution model for joint storm-flood modeling. Meanwhile, the graphical evaluation method, the squared Euclidean distance, and the OLS criterion were applied to optimize the best Copula model. Finally, the probability of rainfall-flood encounters and the top likelihood of flooding under various rainfall scenarios were evaluated and investigated. The results show that the Clayton-based model is the best-fitting Copula function for the joint storm-flooding distribution, and the squared Euclidean distance and the OLS criterion reach 0.120 and 0.044, respectively; the risk of combined storm-flood is significantly, and the probability of joint flooding is 1.5 times higher than that of a single storm (or flooding) occurs;? the top probable flooding of the corresponding conditions under the typical rainfall scenarios of 0.5%, 1%, and 2% are 0.6%, 1.3%, and 2.6%, respectively. Flood control in the upper Yujiang River section of the Pinglu Canal is a difficult challenge.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-07
  • 最后修改日期:2024-05-12
  • 录用日期:2024-05-23
  • 在线发布日期:
  • 出版日期: