基于优化BP神经网络的泾河输沙量预测研究
DOI:
作者:
作者单位:

甘肃省水利厅讨赖河流域水资源利用中心

作者简介:

通讯作者:

中图分类号:

P333.4

基金项目:

甘肃省2022年度第一批省级水资源费项目(甘水资源发〔2022〕94号);甘肃省水利厅2023年度第一批省级水资源费项目(甘水资源发〔2023〕88号)


Prediction of sediment discharge in Jinghe River based on optimized BP neural network
Author:
Affiliation:

Water Resources Utilization Center of Taolai River Basin, Gansu Provincial Water Resources Department

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为准确预测资料较少河流的输沙量,选取泾河支流茹河为研究对象,采用茹河上游开边水文站1980—2020年实测水文数据,建立了基于3种激活函数的BP神经网络预测模型,在此基础上构建了基于模拟退火(SA)算法优化的SA-BP神经网络预测模型,并进行了六个预测模型的对比。研究结果表明:BP神经网络和SA-BP神经网络模型均能较好预测茹河流域输沙量,但在只有径流资料的情况下,BP神经网络模型的预测精度较低;SA算法可以提高BP神经网络的预测精度,且基于ReLU激活函数的SA-BP神经网络的预测效果最佳,预测精度为0.86。该研究为资料较少河流输沙量准确预测提供了一种新方法。

    Abstract:

    In order to accurately predict the sediment discharge of rivers with less data, Ruhe River, a tributary of Jinghe River, was selected as the research object. Based on the measured hydrological data of Kaibian Hydrological Station in the upper reaches of Ruhe River from 1980 to 2020, a BP neural network prediction model based on three activation functions was established. On this basis, a SA-BP neural network prediction model based on simulated annealing ( SA ) algorithm optimization was constructed, and the comparison of six prediction models was carried out. The results show that both BP neural network and SA-BP neural network model can better predict the sediment discharge in Ruhe River Basin, but in the case of only runoff data, the prediction accuracy of BP neural network model is low. The SA algorithm can improve the prediction accuracy of the BP neural network, and the SA-BP neural network based on the ReLU activation function has the best prediction effect, and the prediction accuracy is 0.86. This study provides a new method for accurate prediction of river sediment transport with less data.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-08-30
  • 最后修改日期:2024-08-13
  • 录用日期:2024-08-19
  • 在线发布日期:
  • 出版日期: