基于完全遥感的湖泊湿地水文特征参数综合反演
DOI:
作者:
作者单位:

作者简介:

朱长明(1983-),男,安徽庐江人,博士,副教授,主要从事遥感信息智能提取、湿地生态环境遥感以及干旱区水文水资源研究等。E-mail:zhuchangming@jsnu.edu.cn

通讯作者:

中图分类号:

TP75.1

基金项目:

国家自然科学基金项目(61473286);国家重点研发计划项目(2017YFB0504201);


Lake Hydrological Information Estimation Based on Remote Sensing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    湖泊水文特征参数在水资源合理配置、规划、灾害预警中发挥了重要的作用。在总结现有的水文特征参数遥感提取方法的基础上,依据多源多时相遥感数据,构建基于完全遥感的湖泊水文特征参数综合反演技术框架体系。首先,通过多光谱遥感影像完成水域面积参数的时间序列遥感提取;然后选取测高卫星ICESat GLAS的有效激光雷达点云数据,对湖泊水位高程信息进行反演;进一步根据湖盆数据对湖泊水资源量估算,并通过"面积—水位—水量"关系模型构建,实现湖泊水文特征参数的高动态模拟。实验表明:该方法反演的水文参数与实测数据一致性较好,误差较小,结果可信度高;体现了遥感在水资源综合监测中的技术优势,可为区域水资源调查与监测提供技术参考。

    Abstract:

    The information of the lake area, water level and storage are important hydrological parameters, which plays animportant role in water resources allocation, planning and disaster warning. In summarizing the existing parameters estimationmethods based on remote sensing technology, this paper proposed a technical framework for hydrological parameters measuring andcalculation, based on multi -source remote sensing data. Firstly, using lake automatic extraction algorithm, water body wasextracted from multi-temporal remote sensing images. Secondly, ICESat laser point cloud data were adopted to estimate water levelelevation. Thirdly, according to the lake area, water level and lake underwater terrain, the lake dynamic volume was calculated.Finally, through the recent lake water area, level and storage, a ‘area-level-storage’ model was built for the Bosten lake. Theexperiments show that this method retrieves the hydrological characteristic parameters highly consistent with the gauged data fromthe hydrometry stations, and the result has high reliability. This method reflects the merits of remote sensing technology in thewater resources survey and monitoring quantitatively. It provides a new technical measurement for local water resources planningand monitoring.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-06-13
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-06-23
  • 出版日期: