集成极限学习机的中小河流洪水预报方法研究
DOI:
作者:
作者单位:

作者简介:

孔俊(1993-),男,江苏丹阳人,硕士研究生,主要研究方向为模式识别与数据挖掘。E-mail:18262382605@163.com

通讯作者:

中图分类号:

TP391

基金项目:

公益性行业科研专项(201501022);江苏省重点研发计划项目(BE2015707);


Flood Forecasting for Small- and Medium-sized Rivers by Ensemble Extreme Learning Machine
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为利用水文现象相似性和极限学习机(ELM)集成学习提高洪水预报精度,提出了一种基于相似度匹配的集成ELM洪水预报方法(SM-ELM)。方法首先从多个ELM模型中,为每一个训练样本找到最优的ELM模型,然后从训练集中,为测试样本匹配出最相似的前k个训练样本,最后利用这k个训练样本分别对应的最优ELM模型,对测试样本采用加权平均法进行集成预报。为证明提出方法的可行性和有效性,以昌化流域的历史洪水为例进行了验证。结果表明,相对于单个ELM,集成ELM模型能有效地提高预测精度。从均方根误差上看,集成ELM模型性能比单个ELM模型提升了10%15%。在三种集成方法中,SM-ELM能够以较少的模型数量获得较高且稳定的预报精度。

    Abstract:

    In order to take the advantages of hydrological similarity and ensemble extreme learning machine (ELM) to improveflood forecasting accuracy, we proposed a flood forecasting method for small- and medium-sized rivers, which is ensemble extremelearning machine based on similarity matching (SM-ELM). Firstly, we found the optimal ELM for each training sample from manyELMs. Then, we found k training samples that are most similar with the testing sample from the training set. At last, we used theoptimal ELMs of the k training samples to predict testing sample and combine the model outputs through weighted average strategy.We took the historical floods in the Chuanghua River Basin as study case to prove the validity of the proposed method. Theresults indicate that the ensemble ELM significantly improve the flood forecasting accuracy as compared with the single ELM. Theaccuracy of ensemble ELM is about 10%-15% higher than that of the single ELM in terms of root mean square error. Among thethree ensemble methods, SM-ELM can achieve higher and more stable forecasting accuracy with less number of ELMs.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-04-05
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-06-23
  • 出版日期: