水文模型参数多目标率定及最优非劣解优选
作者:
作者简介:

周建中 (1959-),男,湖北武汉人,教授,博导,研究方向为水电能源及其复杂系统分析的先进理论与方法。 E-mail:jz.zhou@mail.hust.edu.cn

中图分类号:

P333

基金项目:

国家自然科学基金重大研究计划重点支持项目(91547208);国家自然科学基金项目(51579017);水利部公益性行业科研专项经费项目(201401014-2);


Study on Multi-objective Calibration of Hydrological Model and Optimization Method of Optimal Pareto Solutions
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    针对概念性水文模型参数众多、相互制约,且多目标参数优化率定最优参数求解困难、易受决策者主观因素影响的问题,采用多目标优化算法对水文模型参数进行率定,得到模型参数最优非劣解集,在此基础上,引入最小最大后悔值决策理论,并结合Pareto支配基本理论,提出了一种多目标最优非劣解选取准则。以柘溪流域为研究对象,采用三目标MOSCDE优化率定新安江模型的参数,并与单目标SCE-UA优化结果进行对比分析。结果表明,提出的非劣解选取方法可以有效从大规模非劣解集中筛选出最优非劣解,大大缩短参数率定耗时。

    Abstract:

    Numerous parameters of conceptual hydrological model have an inter-constraint relationship between each other and it is difficult to choose the optimal parameters of multi-objective parameter optimization due to the influences of subjective factors of policy makers. To solve this problem, we adopted a multi-objective optimization algorithm to calibrate hydrologic model parameters and obtained a series of Pareto optimal sets of model parameters. Based on these sets, we introduced the minimum maximum regret decision theory and combined the basic theory of Pareto dominance. Then we put forward a multi-objective optimal selection principles of Pareto solutions. Taking the Zhexi watershed as the research object, we used MOSCDE to calibrate the parameters of hydrological model and compared the results with the single objective optimization results. The results indicated that the proposed method can effectively select the optimal solution and is not limited by the large scale of Pareto optimal sets. In addition, this method can also greatly reduce the amount of time.

    参考文献
    [1] Cheng C T, Ou C P, Chau K W. Combining a fuzzy optimal model with a genetic algorithm to solve multi -objective rainfall - runoff model calibration[J]. Journal of Hydrology, 2002,268(1):72-86. [2] 武新宇,程春田,赵鸣雁. 基于并行遗传算法的新安江模型参数优化 率定方法[J].水利学报,2004,(11):85-90.(WU Xinyu,CHENG Chuntian, ZHAO Mingyan. Parameter calibration of Xinanjiang rainfall-runoff model by using parallel genetic algorithm [J]. Journal of Hydraulic Engineering, 2004,(11):85-90. (in Chinese)) [3] 杨道辉,马光文,刘起方. 基于粒子群优化算法的 BP 网络模型在径 流预测中的应用 [J]. 水 力 发 电 学 报, 2006,25 (2):65-68. (YANG Daohui, MA Guang wen, LIU Qifang. Runoff prediction by BP networks model based on PSO [J]. Journal of Hydroelectric Power, 2006,25(2):65-68. (in Chinese)) [4] 刘苏宁,甘泓,魏国孝. 粒子群算法在新安江模型参数率定中的应用[J]. 水 利 学 报, 2010,41 (5):537-544. (LIU Suning, GAN Hong, WEI Guoxiao. Application of PSO algorithm to calibrate the Xin’anjiang hydrological model[J]. Journal of Hydraulic Engineering, 2010,41(5): 537-544. (in Chinese)) [5] Duan Q, Gupta V K, Sorooshian S. Effective and efficient global optimization for conceptual rainfall-runoff models[J].Water Resources Research, 1992,28(4):1015-1031.
    [6] 马海波,董增川,张文明,等. SCE-UA 算法在 TOPMODEL 参数 优 化
    中的应用[J]. 河海大学学报(自然科学版), 2006,34(4):361-365. (MA
    Haibo, DONG Zengchuan, ZHANG Wenming, et al. Application of
    SCE -UA algorithm to optimization of TOPMODEL parameters [J].
    Journal of Hohai University (Natural Sciences), 2006,34(4):361-365.
    (in Chinese))
    [7] Vrugt J A, Gupta H V, Bastidas L A, et al. Effective and efficient
    algorithm for multiobjective optimization of hydrologic models [J].
    Water Resources Research, 2003,39(8):12-14.
    [8] Yapo P. O., Gupta H. V., Sorooshian S. Multi -objective global
    optimization for hydrologic models [J]. Journal of Hydrology,1998,204(1):
    83-97.
    [9] Vrugt J., Gupta H. V., Bastidas L. A., et al. Effective and efficient
    algorithm for multiobjective optimization of hydrologic models [J].
    Water Resources Research, 2003,39(8):12-14.
    [10] Tang Y., Reed P., Wagener T. How effi cient and effective are
    evolutionary multiobjective algorithms at hydrologic model calibration[J].
    Hydrology and Earth System Sciences, 2006,10(2):289-307.
    [11] 张文明,董增川,朱成涛,等. 基于粒子群算法的水文模型参数多目
    标 优 化 研 究 [J]. 水 利 学 报 , 2008, 39 ( 5) :528 - 534. ( ZHANG
    Wenming, DONG Zengchuan, ZHU Chengshou, et al. Automatic
    calibration of hydrologic model based on multi -objective particle
    swarm optimization method [J]. Journal of Hydraulic Engineering,
    2008,39(5):528-534. (in Chinese))
    [12] 郭俊,周建中,邹强,等. 水文模型参数多目标优化率定及目标函数
    组合对优化结果的影响. 四川大学学报(工程科学版), 2011,43(6):
    58-63.(GUO Jun, ZHOU Jianzhong, ZOU Qiang, et al. Study on
    multi -objective calibration of hydrological model and effect of
    objective functions combination on optimization results [J]. Journal
    of Sichuan University (Engineering Science), 2011,43(6):58-63. (in
    Chinese))
    [13] 赵人俊. 流域水文模拟: 新安江模型和陕北模型[M]. 北京:水利电
    力 出 版 社, 1984:109-118.(ZHAO Renjun. Watershed Hydrological
    Modeling: Xinanjiang Model and Shanbei Model [M]. Beijing:
    China WaterPower Press, 1984:109-118. (in Chinese))
    [14] Duan Q. Y., Sorooshian S., Gupta V. Effective and efficient
    global optimization for conceptual rainfall-runoff models[J]. Water
    Resources Research, 1992,28(4):1015-1031.
    [15] Guo J, Zhou J, Zou Q, et al. A novel multi -objective shuffled
    complex differential evolution algorithm with application to
    hydrological model parameter optimization [ J ] . Water resources
    management, 2013,27(8):2923-2946.
    [16] 邱若臻,黄小原. 基于最小最大后悔值准则的供应链鲁棒协调模型[J].
    系 统 管 理 学 报, 2011,20(3):296 -302. (QIU Ruozhen, HUANG
    Xiaoyuan. A robust supply chain coordination model based on
    minimax regret criterion[J]. Journal of Systems and Management,
    2011,20(3):296-302. (in Chinese))
    [17] 张玲,陈涛,黄钧. 基于最小最大后悔值的应急救灾网络构建鲁棒
    优化模型与算法[J]. 中国管理科学, 2014,22(7):131-139.(ZHANG
    Ling, CHEN Tao, HHUANG Jun. Emergency network model and
    algorithm based on minmax regret robust optimization [J]. Chinese
    Journal of Management Science, 2014,22(7):131-139. (in Chinese))
    [18] 王建忠,杜纲. 一类区间线性双层规划的最小最大后悔解及其解法[J].
    统 计 与 决 策, 2011,(20):160-162. (WANG Jianzhong, DU Gang.
    Minmax regret solution for solving linear bilevel programming
    with interval coefficients [J]. Statistics and Decision, 2011, (20):
    160-162. (in Chinese))
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:744
  • 下载次数: 389
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2016-07-09
  • 在线发布日期: 2022-06-22