珠江流域降水集中度时空变化特征及成因分析
作者:
作者简介:

郑炎辉(1990-),男,广东揭阳人,博士研究生,主要从事水文与水资源方面的研究。 E-mail: zheng_yanhui@foxmail.com

中图分类号:

P426.6

基金项目:

国家自然科学基金项目(51210013,51479216,51509127);国家科技支撑计划(2012BAC21B0103);水利部公益项目(201201094,201301002-02);


Spatial-temporal Variation of Precipitation Concentration Degree in Pearl River Basin and Its Causes
Author:
  • ZHENG Yanhui

    ZHENG Yanhui

    1. Center for Water Resources and Environment, Sun Yat-sen University, Guangzhou 510275, China; 2 Key Laboratory of Water Cycle and Water Security in Southern China of Guangdong Higher Education Institutes, SunYat-sen University, Guangzhou 510275, China; 3 School of Civil and Transportation Engineering, South China University of Technology, Guangzhou 510641, China
    在知网中查找
    在百度中查找
    在本站中查找
  • CHEN Xiaohong

    CHEN Xiaohong

    1. Center for Water Resources and Environment, Sun Yat-sen University, Guangzhou 510275, China; 2 Key Laboratory of Water Cycle and Water Security in Southern China of Guangdong Higher Education Institutes, SunYat-sen University, Guangzhou 510275, China; 3 School of Civil and Transportation Engineering, South China University of Technology, Guangzhou 510641, China
    在知网中查找
    在百度中查找
    在本站中查找
  • HE Yanhu

    HE Yanhu

    1. Center for Water Resources and Environment, Sun Yat-sen University, Guangzhou 510275, China; 2 Key Laboratory of Water Cycle and Water Security in Southern China of Guangdong Higher Education Institutes, SunYat-sen University, Guangzhou 510275, China; 3 School of Civil and Transportation Engineering, South China University of Technology, Guangzhou 510641, China
    在知网中查找
    在百度中查找
    在本站中查找
  • LAI Chengguang

    LAI Chengguang

    1. Center for Water Resources and Environment, Sun Yat-sen University, Guangzhou 510275, China; 2 Key Laboratory of Water Cycle and Water Security in Southern China of Guangdong Higher Education Institutes, SunYat-sen University, Guangzhou 510275, China; 3 School of Civil and Transportation Engineering, South China University of Technology, Guangzhou 510641, China
    在知网中查找
    在百度中查找
    在本站中查找
  • WANG Zhaoli

    WANG Zhaoli

    1. Center for Water Resources and Environment, Sun Yat-sen University, Guangzhou 510275, China; 2 Key Laboratory of Water Cycle and Water Security in Southern China of Guangdong Higher Education Institutes, SunYat-sen University, Guangzhou 510275, China; 3 School of Civil and Transportation Engineering, South China University of Technology, Guangzhou 510641, China
    在知网中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    基于珠江流域内43个常规气象站点19602012年的逐日降水资料,计算了流域内各站点长期降水集中度(LCI)和逐年降水集中度(ACI);采用Mann-Kendall趋势检验法和Sen’s坡度检验法检测ACI时间上的变化趋势;同时采用反距离权重插值法(IDW)对LCI的区域特征和ACI的变化趋势进行空间插值以分析降水集中度的时空分布规律;采用随机森林(RF)算法对降水集中度的影响因子进行重要度分析。结果表明:(1)珠江流域逐年降水集中度ACI的年际变化不明显,东南部呈上升趋势,西北部呈下降趋势;(2)珠江流域西北部长期降水集中度LCI值偏小,即降水分布较平均;东南部长期降水集中度LCI值偏大,即降水较集中,表明该地区降水极值情况发生的几率相对较高,该空间分布趋势可能是受距离海洋的远近及海拔的影响;(3)众多气候影响因子中,东亚夏季季风(EASMI)对珠江流域的降水集中度影响最明显。

    Abstract:

    Under the influence of the well-evidenced global warming, extreme precipitation events are likely to occur more and more frequently. As a result, the urban flood control and waterlogging prevention are under serious threat. The extreme precipitation events can be effectively identified by precipitation concentration index (CI), which is mainly used to describe the inhomogeneity of precipitation. This paper attempts to explore the spatiotemporal variations and the causes of precipitation concentration. Mann-Kendall statistical test and Sen’s slope method were used to detect the temporal patterns of ACI (annual precipitation concentration index), and inverse distance weighted (IDW) interpolation method was used to analyze the spatial change of LCI (long period precipitation concentration index) as well as the temporal variation trend of ACI based on daily precipitation at the 43 stations during 1960-2012 in the Pearl River Basin. Meanwhile, the random forest algorithm (RF) was applied to identify the contributions of the influencing factors. The results show that: (1) The northwest of Pearl River Basin indicates lower LCI while the southeast part indicates higher LCI, which shows that the extreme precipitation events will occur more frequently in the southeast. (2) The interannual variation of ACI in Pearl River Basin is not obvious, the northwest part shows decreasing trend while the southeast part shows increasing trend, the spatial distribution trend is likely to be affected by distance from ocean and altitude. (3) The importance analysis based on RF shows that the east Asian summer monsoon (EASMI) is the most significant factor of precipitation concentration among the 7 factors.

    参考文献
    [1] IPCC. Summary for Policymakers of the Synthesis Report of the IPCC Fifth Assessment Report [M]. Cambridge, UK: Cambridge University Press, 2007. [2] Zhang Lujun, Qian Yongfu. Annual distribution features of the yearly precipitation in China and their interannual variations [J]. Acta Meteorologica Sinica, 2003,17(2):146-163. [3] 张录军,钱永甫. 长江流域汛期降水集中程度和洪涝关系研究[J]. 地 球物 理 学 报, 2004,47(4):622-630. (ZHANG Lujun, QIAN Yongpu. A study on the feature of precipitation concentration and its relation to flood-producing in the Yangtze River valley of China [J]. Chinese Journal Geophysics, 2004,47(4):622-630. (in Chinese)) [4] 李远平,杨太保,马建国. 淠河流域汛期降水集中度和集中期的变化 特征[J]. 资源科学, 2012,(3):418-423. (LI Yuanping, YANG Taibao, MA Jianguo. Change characteristics of precipitation concentration degree (PCD) and precipitation concentration period (PCP) in the flood season in Pi River valley [J]. Resources Science, 2012,(3): 418-423. (in Chinese)) [5] 曹永强,路璐,张亭亭,等. 基于降水集中度和集中期的浙江省降水时 空变化特征分析 [J]. 资 源 科 学 , 2013, (5):1001 -1006. (CAO Yongqiang, LU Lu, ZHANG Tingting, et al. Spatio-temporal variation in precipitation in Zhejiang province based on PCD and PCP[J]. Resources Science, 2013,(5):1001-1006. (in Chinese)) [6] 黄晓亚,陈喜,张志才,等. 西南喀斯特地区降水集中度及其变化特征 分析-以乌江流域中上游为 例 [J]. 地球 与 环 境, 2013,(3):203-208. (HUANG Xiaoya, CHEN Xi, ZHANG Zhicai, et al. Analysis of daily rainfall concentration and its change characteristics in southwestern Karst regions: a case study of Wujiang catchment [J]. Earth and Environment, 2013,(3):203-208. (in Chinese)) [7] Martin Vide J. Spatial distribution of a daily precipitation concentration index in peninsular Spain [J]. International Journal of Climatology, 2004,24(8):959-971. [8] Alijani B, O’Brien J, Yarnal B. Spatial analysis of precipitation intensity and concentration in Iran [J]. Theoretical & Applied Climatology, 2008,94(1-2):107-124. [9] Cortesi N, González-Hidalgo J C, Brunetti M, et al. Daily precipitation concentration across Europe during 1971-2010 [J]. Natural Hazards & Earth System Sciences, 2012,12(9):2799-2810. [10] Wang W, Xing W, Yang T, et al. Characterizing the changing behaviours of precipitation concentration in the Yangtze River basin, China [J]. Hydrological Processes, 2013,27(24):3375-3393. [11] Yang, Shao, HaoZ C, et al. Regional frequency analysis and spatiotemporal pattern characterization of rainfall extremes in the Pearl River basin, China[J]. Journal of Hydrology, 2010,380(3):386-405. [12] 王兆礼,陈晓宏,张灵,等. 近 40 年来珠江流域降水量的时空演变特 征[J]. 水 文, 2006,26(6):71-75. (WANG Zhaoli, CHEN Xiaohong, ZHANG Ling, et al. Spatio -temporal change characteristics of precipitation in the Pearl River basin in recent 40 years [J]. Journal of China Hydrology, 2006,26(6):71-75. (in Chinese)) [13] 唐亦汉, 陈晓宏. 近 50 年珠江流域降雨多尺度时空变化特征及其 影响[J]. 地理科学, 2015,(4):476-482. (TANG Yihan, CHEN Xiaohong. Multi-scale spatio-temporal characteristics and influence of precipitation variation in Zhujiang River basin during the last 50 years [J]. Scientia Geographica Sinica, 2015,(4):476-482. (in Chinese)) [14] Shaw G, Wheeler D. Statistical Techniques in Geographical Analysis[M]. Technometrics, 1985. [15] Mann H B. Nonparametric test against trend [J]. Econometrika, 1945,13(3):245-259. [16] Kendall M G. Rank Correlation Methods [J]. Biometrika, 1990. [17] Sen P K. Estimates of regression coefficient based on Kendall’s tau [J]. Journal of the American Statistical Association, 1968,63 (324). [18] Yue S, Pilon P, Phinney B, et al. The influence of autocorrelation on the ability to detect trend in hydrological series [J]. Hydrological Processes, 2002,16(9):1807–1829. [19] Breiman L. Random Forests [J]. Machine Learning, 2001,45(1):5- 32. [20] Iverson LR, Prasad AM, Matthews SN, et al. Estimating potential habitat for 134 eastern US tree species under six climate scenarios[J]. Forest Ecol. Manage., 2008,254:390-406. [21] 赖成光,陈晓宏,赵仕威,等. 基于随机森林的洪灾风险评价模型及 其应用 [J]. 水利学报, 2015,(1):58-66. (LAI Chengguang, CHEN Xiaohong, ZHAO Shiwei, et al. A flood risk assessment model based on random forest and its application [J]. Journal of Hydraulic Engineering, 2015,(1):58-66. (in Chinese)) [22] Zhaoli Wang, Chengguang Lai, Xiaohong Chen, et al. Flood hazrd risk assessment model based on random forest [J]. Journal of Hydrology, 2015,527:1130-1141.
    [23] 孙大利,刘晓阳,王久珂,等. 雨量站网测量精度的评估[J]. 气象科技
    进展, 2015,(5):50-54. (SUN Dali, LIU Xiaoyang, WANG Jiuke, et
    al. Research on the measurement precision of the rain-gauge networks [J]. Advances in Meteorological Science and Technology,
    2015,(5):50-54. (in Chinese))
    [24] 胡豪然,毛晓亮,梁玲. 近 50 年四川盆地汛期极端降水事件的时空
    演变 [J]. 地理学报, 2009,(3):278-288. (HU Haoran, MAO Xiaoliang, LIANG Ling. Temporal and spatial variations of extreme
    precipitation events of flood season over Sichuan basin in last 50
    years [J]. Acta Geographica Sinica, 2009,(3):278-288. (in Chinese))
    [25] 任小玢,董治宝,周正朝. 近 50 年来四川盆地降水日数的时空变化
    特 征 [J]. 水土 保 持 通 报, 2012,(4):65-70. (REN Xiaofen, DONG
    Zhibao, ZHOU Zhengchao. Spatio-temporal variation of precipitation days of Sichuan basin in nearly 50 years [J]. Bulletin of Soil
    and Water Conservation, 2012,(4):65-70. (in Chinese))
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:639
  • 下载次数: 373
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2015-10-27
  • 在线发布日期: 2022-06-22