育种进化的改进遗传算法在水电站负荷分配中的应用
DOI:
作者:
作者单位:

作者简介:

邓丽丽(1990-),女,江西宜春人,硕士研究生,研究方向为水库(群)优化调度与经济运行、水资源规划与管理。 E-mail:denglili0312@126.com

通讯作者:

中图分类号:

TV734;TP18

基金项目:

国家重点基础研究发展规划973项目(2012CB417006);国家科技支撑计划课题(2009BAC56B03);


Breed-evolutionary Improved Genetic Algorithm for Load Dispatch of Hydropower Station
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对遗传算法求解水电站负荷优化分配问题时常出现的收敛性差、易早熟等问题,提出一种基于育种进化的改进遗传算法。改进算法运用部分解约束的初始种群生成法避开空蚀振动区,定义了与群体进化程度有关的种群多样性函数和种群多样性阈值,同时有效地应用了遗传的全局搜索能力和育种的局部搜索能力。以三峡水电站为例与标准遗传算法进行了比较,不同的负荷分配结果表明:育种进化的改进遗传算法能够避开空蚀振动区的影响,保证机组的稳定安全运行;同时由于育种进化的强局部搜索能力,保持了种群的多样性,提高了算法的搜索能力和收敛性。

    Abstract:

    Facing on the bad convergence and easy premature often emerged in Genetic Algorithm making solution of hydropower station economic load dispatch, the Breed-evolutionary Improved Genetic Algorithm (BIGA) was proposed. BIGA used the partial solution constraint initial population generation method to avoid cavitations-vibration range, so as to describe the level of group-evolution, and define the function of population -diversity and threshold of population -diversity. Meanwhile, the global searching ability of Genetic Algorithm and local searching ability of Breed were effectively applied. A contrast between BIGA and SGA applied for the Three Gorges hydropower station was presented. The distribution results based on several loads show that: In BIGA, stable and safe operation of unit were ensured by avoiding cavitations-vibration range. And, with the strong local searching ability of breed, the population diversity was maintained, and the searching ability and convergence of the algorithm were improved.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-11-29
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-06-21
  • 出版日期: