摘要:采用相关分析法,在区域降水、观测断面流量(或水位)因子中识别出影响预报断面径流过程的主要变量,在多个观测断面的数据均为流量情况下,采用基于时延组合的合成流量为影响预报断面径流过程的变量,采用自相关分析法,识别出影响预报断面径流过程的前期流量(或水位),以这些变量为BP神经网络模型的输入,以预报断面的流量(或水位)为模型的输出,在BP神经网络隐层节点数自动优选的基础上,构建了基于BP神经网络的洪水预报模型。将模型载入中国洪水预报系统中,应用结果表明:模型在历史洪水训练样本具有一定代表性的情况下,可获得较高的预报精度。