基于互信息量与BP神经网络的中长期径流预报方法研究
DOI:
作者:
作者单位:

作者简介:

卢迪 (1987-),男,吉林永吉人,博士生,主要从事水文水资源研究。 E-mail:ludi_dlut@aliyun.com

通讯作者:

中图分类号:

P338.2

基金项目:


Medium and Long-term Runoff Forecasting Based on Mutual Information and BP Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对中长期径流预报因子的选择问题,采用互信息量方法筛选预报模型输入因子,在BP神经网络模型中,分别用均方误差和互信息量作为目标函数,衡量因子复合相关关系,优化选择最终预报因子并应用于碧流河汛期径流预报中。结果表明,基于互信息量筛选的预报因子与BP神经网络模型相结合,可有效识别多个预报因子与预报量间的复合相关性,对中长期径流预报因子的选择有很好参考价值。

    Abstract:

    As for the medium and long-term runoff forecasting factors selection, this paper introduced mutual information (MI) to select the subset of factors from numerous meteorological factors into back-propagation neural network (BPN) model. In the model, mean square error (MSE) and MI were presented as objective functions respectively to measure factors compound correlation for the purpose of selecting optimal forecasting factors. The study was applied to forecast flood season runoff of the Biliuhe reservoir. The results show that using MI to select the subset and combining MI with BPN model can identify the correlation between runoff and its affecting factors effectively. The methods of factors selection may provide a good reference for medium and long-term runoff forecasting.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-08-15
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-06-21
  • 出版日期: