基于平均线性粒子群算法的人工神经网络在径流预报中的应用
DOI:
作者:
作者单位:

NULL

作者简介:

董晓华 (1972-),湖北宜昌人,教授,博士,主要从事水文水资源领域的研究。 E-mail: xhdong@ctgu.edu.cn

通讯作者:

中图分类号:

P338

基金项目:

国家自然科学基金项目(40701024);


Application of Artificial Neutral Networks in Runoff Forecasting Based on Mean Linear Particle Swarm Optimization Method
Author:
Affiliation:

NULL

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    人工神经网络具有很强的非线性处理能力,能够有效地模拟复杂的非线性径流预报过程。传统的基于BP训练算法的人工神经网络具有训练时间较长,容易陷于局部最优值等缺陷,本文对训练算法加以改进,分别使用平均线性粒子群,粒子群和BP算法来优化人工神经网络的各项参数,首先使用标准函数测试了3种算法的全局优化性能,然后用它们对三峡水库的入库径流进行预报,以比较它们的预报性能。结果表明,在3种算法中,平均线性粒子群算法全局寻优的速度最快,稳定性最高,基于平均线性粒子群算法的人工神经网络的径流预报的精度也最高。

    Abstract:

    Artificial neural networks (ANNs) are effective tools in forecasting runoff in river because of their power capability in mapping in-output relations. However, the traditional ANNs based on back - propagation training algorithm need improvement because they have shortcomings in long training times and prone in falling into local optimum points. Therefore, 3 algorithms were used to train the ANNs-mean linear particle swarm optimization (ML-PSO) method, original particle swarm optimization (PSO) method and BP method. Their global optimization capabilities were first tested by using the 3 standard mathematical functions, and the ANNs based on the 3 training algorithms were applied in runoff forecasting to test their performances. The results show that among the 3 algorithms, the ML-PSO algorithm is the fastest and most robust one in finding global optimum, and it also is the most accurate one in forecasting runoff.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2012-02-24
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-06-20
  • 出版日期: