基于机器学习的水位流量关系模型参数估计
DOI:
作者:
作者单位:

NULL

作者简介:

江竹(1979-),女,四川成都人,讲师,博士,主要从事水文资源教学与研究工作。 E-mail:HILL5525@163.com

通讯作者:

中图分类号:

P333

基金项目:

四川省流体机械重点实验室资助(SBZDPY-11-5);西华大学高校重点项目(Z1120413);


Parameter Estimation of Stage-discharge Relationship Based on Machine Learning
Author:
Affiliation:

NULL

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了克服经典水位流量关系模型在刻画河流动态变化特性时所存在的局限性,提出采用局部加权回归算法估计模型参数;为了提高参数估计精度以及流量的计算效率,提出一种聚类树加权回归方法。首先对训练样本进行聚类,然后使用k-最近邻方法将新的水位样本划分进最恰当的聚类中,最后估计河流日流量。该方法在估计过程中,避免了不相关信息的干扰,从而提高了日流量数据估计的效率和精度。利用某水文站的实测数据对方法进行测试,仿真结果表明,方法估计精度高,为水位流量关系模型参数估计提供了新的有效方法。

    Abstract:

    To overcome the limitation of the classical stage-discharge relationship model in describing the dynamic characteristics of a river,the locally weighted regression method was used to estimate the model parameters. In order to improve the estimation precision and the calcu -lation efficiency of river discharge, a novel method called clustering-tree weighted regression was proposed. Firstly, the trained samples wereclustered in this method. Secondly, k-nearest neighbors method was used to cluster new stage samples into the best fit clustering. Finally, thedaily discharge of the river was estimated. During the estimation process, the interference of irrelevant information was avoided, so the estima -tion precision and efficiency of daily discharge were improved. The data observed at some hydrological stations were used for the test. The sim -ulation results show that the estimation precision of this method is high. This provides a new effective method for the estimation of parameters ofstage-discharge relationship model.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2011-12-05
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-06-17
  • 出版日期: