径向基函数神经网络需水预测研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TV213.4

基金项目:

国家重点基础研究发展计划(973计划)


Water Demand Prediction Based on Radial Basis Function Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在分析山西省历年用水量和人均用水量的基础上,建立径向基函数神经网络需水预测模型,采用最近邻聚类学习算法确定径向基函数的宽度、选取聚类中心和权值。采用丰富的需水预测因子作为模型的输入,网络输出需水预测值。预测结果表明,径向基函数神经网络需水预测模型运算速度快,有较高的预测精度。需水预测可为水资源规划和配置提供依据。

    Abstract:

    Based on analysis of the water consumption and water consumption per capita in Shanxi Province for years, the water demand prediction model of radial basis function neural network was set up. The nearest neighbor-clustering algorithm was adopted to decide the width of radial basis function, the cluster centers were chosen, and the weight values were calculated. Abundant water demand predicting factors were used as the input data of the model, and the RBF neural network output the water demand predicting values. The predicting results show that the model has faster calculating speed and higher predicting accuracy, which can provide basis for water resources planning and allocation.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2006-10-30
  • 录用日期:
  • 在线发布日期:
  • 出版日期: