淮河息县站流量概率预报模型研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

P338.1

基金项目:


Study on the Probability Flood Forecasting Model at Xixian Gauging Station of Huaihe River Basin
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    应用美国天气局采用的由Roman Krzysztofowicz开发的贝叶斯统计理论建立概率水文预报理论框架,即以分布函数形式定量地描述水文预报不确定度,研究了淮河息县站流量概率预报模型。理论和经验表明,概率预报至少与确定性预报一样有价值,特别当预报不确定度较大时,概率预报比现行确定性预报具有更高的经济价值。

    Abstract:

    Based on Bayesian statistic theory (developed by Roman Krzysztofowicz)which was adopted by the National Weather Service (NWS)of the United States, an academic frame of probability hydrological forecast has been established, which describes the uncertainty of hydrological forecast by using distribution function. According to the frame, the model of probability flood forecast at Xixian Gauging Station of Huaihe River Basin has been studied. The research shows that Bayesian approaches is at least as good as current methods (i.e. deterministic forecast). And it is more valuable than current methods especially when an obvious uncertainty is come forth.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期: