水文模型参数自动优选方法的比较分析
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

P334.92

基金项目:


A Comparative Study on Optimization Methods for Calibrating the Hydrological Models
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    模型参数的识别是模糊研制与应用成功与否的关键。介绍了三个自动优选模型参数的方法,以新安江模型为例,应用14个流域的资料,对罗森布郎克法、改进的单纯形法和基因算法优算法优选模型参数的效果,优化方法和收敛速度及参数初值对优选效果的影响进行了比较分析。

    Abstract:

    The successful development and application of a conceptual rainfall-runoff model depends mainly on how well it is calibrated. This paper introduces three optimization methods, namely Rosenbrock, Simplex and Genetic algorithm, for automatic calibration of the hydrological models, The performances of the methods were analyzed on the basis of the application of them to the Xinanjiang model using 14 catchments data. The effects of the parameter values of the Genetic method on calibration of the model parameter values were preliminarily investigated. The results suggest that the Genetic algorithm with further tuning by other two methods can provide an efficient and robust means for calibrating the conceptual rainfall-runoff models.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期: