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Table3 The enfr statistics of the simulation results
CE RMSE MAE
PEK CLS PEK CLS PEK CLS
1 0.95 0.76 24.73 56.22 13.32 45.27
2 0.86 0.65 37.11 59.47 30.03 44.95
3 0.84 0.67 34.01 48.25 16.28 37.38
4 0.87 0.74 33.62 48.23 18.80 39.26
5 0.97 0.68 22.40 76.77 9.63 41.53
6 0.90 0.66 32.60 59.71 19.48 43.66
7 0.97 0.67 29.90 99.84 16.55 48.80
8 0.87 0.77 59.00 78.75 33.11 58.44
9 0.96 0.81 20.17 46.07 12.90 37.55
10 0.90 0.55 24.00 51.78 17.18 3391
11 0.93 0.64 25.61 58.64 16.37 48.84
12 0.93 0.68 62.99 131.13 35.33 82.04
13 0.93 0.50 16.44 44.83 12.96 28.63
14 0.97 0.88 18.53 36.88 9.58 27.58
1 0.98 0.85 32.30 89.31 27.29 73.86
2 0.94 0.49 51.27 149.91 35.06 91.29
3 0.94 0.76 17.44 33.82 11.86 26.56
4 0.95 0.80 2745 53.65 16.75 35.71
5 0.97 0.88 28.13 58.30 19.35 40.54
6 0.98 0.60 24.57 103.51 10.95 57.52
s , 5 o
° : (4) PEK CLS
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Application of A New Coupled Data-driven Model in Rainfall-Runoff Simulation
LIANG Ke', KAN Guangyuan®’, LI Zhijia'
(1. College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China; 2. State Key Laboratory of Simulation and
Regulation of Water Cycle in River Basin, Research Center on Flood & Drought Disaster Reduction of the Ministry of Water
Resources, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; 3.State Key Laboratory of

Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100038, China)

Abstract: For the purpose of overcoming the disadvantages of the traditional data—driven model and implementing the high accura-
cy rainfall-runoff simulation by data—driven model, a new coupled data—driven model named PEK has been proposed in this paper.
The PEK model was developed by coupling partial mutual information based on the input variable selection, novel ensemble back—
propagation neural network based on discharge forecasting and K-nearest neighbor based on discharge error forecasting. The PEK
model has the following characteristics: (1) The separate 1VS strategy and the sliding window accumulative rainfall based on model
candidate input vector. These two methods combined with the PMI-based IVS approach ensure the sufficiency and parsimony of the
input information and is very important to the construction of the high quality data—driven model; (2) The novel ensemble back—
propagation neural network and the methodology of calibration were proposed in this paper. The global optimal number of compo-
nent networks, topology and network parameters were obtained simultaneously by using the NSGA-II multi-objective optimization al-
gorithm and the early stopping LM algorithm. The combination weights of the component networks were obtained by the AlIC-based
component network weights assignment approach. The EBPNN model can make a good compromise between simulation accuracy and
network complexity; (3) The PEK model implemented multi-step forecasting and high accuracy simulation under the non—updating
mode. The forecast period was also increased; (4) The PEK model doesn’t need to compute the catchment state variables and im-
plements continuous simulation only by using the initial discharge. In this paper, the PEK and CLS models were applied in hourly
rainfall -runoff simulation in the Chengcun watershed and the results were compared. The simulation results indicate that the PEK
model is easy to use, is better than CLS in simulation accuracy, can realize multi-step high accuracy simulation and increase the
forecasting period of the data—driven model.

Key words: rainfall-runoff simulation; non—updating; data—driven model; PEK model; optimization method
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Abstract: After the soil moisture sensor being installed, it is neccesary to make calibration on the soil conditions in the field for
verifying the rating relation. In practice, field calibration of soil moisture sensor is a complicated step, during which high quality
operation is needed, on-site taking soil is difficult, and it involves working long hours. In this study, the undisturbed soil columns
were collected in field to send to laboratory, the soil was taken out after saturation, let a natural loss of soil moisture, then
regularly weighting was made while the original values from the soil moisture sensor were recorded, so as to study the calibration
of the soil moisture sensor, and discuss the ways of improving efficienty of installing soil moisture sensors.

Key words: undisturbed soil column; soil moisture sensor; calibration method



